

Eastern Interconnection Planning Collaborative

Steady State Modeling and Load Flow Working Group

2020 Roll-Up Integration Case Report

March 7, 2011

Executive Summary

This report details the efforts of the EIPC Steady State Modeling and Load Flow Working Group (SSMLFWG) to produce a 2020 Roll-Up Integration Case of the Eastern Interconnection and provide a summary of the assessments performed. The SSMLFWG includes representatives from each NERC registered Planning Authority ("PA") that is a party to the EIPC Analysis Team Agreement.

The Roll-Up Integration Case represents an important stand-alone aspect of the work of the Planning Authorities as part of the Eastern Interconnection Planning Collaborative. As detailed in the bid submitted to DOE by the Eastern Interconnection Planning Authorities, the Roll-Up Integration Case represents the first of its kind review and analysis of the approved plans of each of the Planning Authorities in the Eastern Interconnection. The purpose of the roll-up is to "provide the platform for the stakeholder driven scenario analysis". The Roll-Up Integration Case, , provides information which may be useful in each Planning Authorities' respective Order 890-approved planning process and will also be of value to stakeholders as they conduct standalone analyses to assess their particular interests. The Roll-Up Integration Case is an integrated model of the expansion plans for the Eastern Interconnection as they existed in 2010, not a single "blueprint" for expanding the system. This case provides solved power flow modeling suitable as a starting point for transmission analysis on an inter-connection-wide basis.

As with all power flow models, the 2020 roll-up integration case is a representation of the power system for a particular "snapshot" in time (2020 Summer Peak hour) based upon actual facilities and planning forecasts as they existed to meet Reliability Standards at the time the model was developed. The SSMLFWG utilized transmission plans that were provided by each PA as the source of data for model development. These existing transmission plans are a product of each participating PA and the FERC approved regional transmission planning processes for each of the participating EIPC members (as applicable) and extend out through the year 2020. It should be noted that loads as well as generation and demand-side resources are inputs into the transmission expansion plans developed by each Planning Authority, and that these inputs are provided by the respective Load Serving Entities (LSEs), market participants, or other applicable entities within each Planning Authority's jurisdiction. Because these inputs are continuously changing, the local and regional transmission plans will necessarily also continuously change resulting in them being more current than can be achieved in wide-area modeling. Nonetheless, wide-area modeling, such as the 2020 roll-up integration case, provides a sound basis for assessing inter-dependencies between and among regions which may not be achievable through local assessments individually. Potential constraints and efficiencies identified through inter-regional analysis are valuable inputs into local and regional processes, where they can be assessed for inclusion into transmission expansion plans.

The planning processes for the EIPC members have many common aspects, but key differences in the processes do exist between Planning Authorities. These differences are expected and, in fact, required given the diversity in the form of regulation, the topography and characteristics of each Planning Authorities' electric transmission system throughout the very large Eastern Interconnection. This report serves to describe in detail the data submitted by each of the EIPC Planning Authorities, explain differences in the Planning Authorities' respective planning processes and assist the Stakeholder Steering Committee ("SSC") in understanding what is contained in the roll-up. In addition, the final report will serve to address EIPC deliverables as related to the DOE Cooperative Agreement (FOA Funding Opportunity Number: DE-FOA0000068). The associated deliverables are listed below:

Subtask 2.B Conduct interregional transmission analyses for Roll-up Integration Case and identify potential transmission conflicts/opportunities among regional plans; e.g., gap analysis.
Subtask 2.C Develop transmission options to address reliability impacts associated with potential conflicts among regional plans.
Subtask 2.D Document and communicate results for consideration in regional planning activities and post the analysis on the EIPC website.
Subtask 2.E Develop flowgates.

Table of Contents

Executive Summary	2
Table of Contents	4
Section 1 Introduction	6
Section 2 2020 Roll-up Integration Plans	9
2.1 Introduction	9
2.2 Load Forecasts and Growth Rates	9
2.3 Treatment of Energy Efficiency and Demand-Side Resources	15
2.4 Interchange or Firm Transmission Service Modeled	
2.5 Process for Future Transmission Project Inclusion	
2.6 Major New and Upgraded Facilities	
2.7 Generation Assumptions (Additions and Retirements)	41
2.8 Generation Dispatch Description	47
Section 3 Interregional Transmission (Gap) Analysis	51
3.1 Introduction	51
3.2 Interregional Analysis Criteria	
3.2.1 Thermal and Voltage Criteria	
3.2.2 Contingency Selection	
3.3 Interregional Analysis Results	
3.3.1 Summary of Thermal Results	
3.3.2 Summary of Voltage Results	
Section 4 Enhancements	59
4.1 Introduction	59
4.2 Issues List, Conceptual Upgrades, and Coordinating Entities	59
4.3 Map of Future Transmission Projects (Projects Near PA Boundaries)	60
Section 5 Linear Transfer Analysis	61
5.1 Introduction	61
5.2 Linear Transfer Analysis Inputs	61
5.3 Linear Transfer Analysis Process	61
5.4 Linear Transfer Analysis Results	62
Appendix A: Future Project Map	66
Appendix B: New/Upgraded Transmission Projects	67
Appendix C: New/Upgraded Generation Included in Roll-Up Model	

Appendix D: Linear Transfer Analysis Results	
Appendix E: Area Interchange Tables	

Section 1 Introduction

On May 21, 2009, the Eastern Interconnection Planning Collaborative was formed by representatives from Planning Authorities ("PAs") in the Eastern Interconnection. This group agreed to initiate the technical work to facilitate coordination of existing transmission plans, conduct reliability analyses of the combined interconnection system, and conduct studies to support state, provincial, regional or federal public policy decision making. The group completed an application for funding from the U.S. Department of Energy (DOE) in response to FOA-0000068. The application was submitted by PJM Interconnection, LLC on behalf of PAs representing the entire Eastern Interconnection. Eight PAs elected to represent the Eastern Interconnection as Principal Investigators (PIs). In addition to the eight principal investigators and Eastern Interconnection Planning Collaborative (EIPC) planning authorities, additional participants to the DOE bid include Charles River Associates (CRA) and the Keystone Center.

Each PI is listed below:

- 1. Entergy Services, Inc. on behalf of the Entergy Corporation Utility Operating Companies ("Entergy")
- 2. ISO New England, Inc. ("ISO-NE")
- 3. Mid-Continent Area Power Pool, by and through its agent, MAPPCOR
- 4. Midwest Independent Transmission System Operator, Inc. ("Midwest ISO")
- 5. New York Independent System Operator, Inc. ("NYISO")
- 6. PJM Interconnection, L.L.C. ("PJM")
- 7. Southern Company Services Inc. ("Southern"), as agent for
 - a. Alabama Power Company
 - b. Georgia Power Company
 - c. Gulf Power Company
 - d. Mississippi Power Company
- 8. Tennessee Valley Authority ("TVA")

The following Planning Authorities are also participating in the EIPC study:

- 1. Alcoa Power Generating
- 2. American Transmission Company ("ATC")
- 3. Duke Energy Carolinas ("DEC")
- 4. Electric Energy Inc.
- 5. LG&E and KU Energy LLC (LG&E/KU)
- 6. Florida Power & Light ("FPL")
- 7. Georgia Transmission Corporation ("GTC")
- 8. IESO (Ontario, Canada)
- 9. International Transmission Company ("ITC")
- 10. JEA (Jacksonville, Florida)
- 11. Municipal Electric Authority of Georgia ("MEAG")
- 12. New Brunswick System Operator ("NBSO")
- 13. PowerSouth Energy Cooperative
- 14. Progress Energy Carolinas ("PEC")
- 15. Progress Energy Florida ("PEF")

- 16. South Carolina Electric & Gas ("SCE&G")
- 17. Santee Cooper ("SCPSA")
- 18. Southwest Power Pool ("SPP")

On Dec. 18, 2009, the EIPC was selected by DOE to receive approximately \$16 Million. PJM elected to serve as the Lead PI for the DOE Project.

The EIPC is intended to complement the regional transmission expansion plans developed each year (plans that are well vetted through the respective FERC Order 890 Regional Planning Processes). The EIPC provides a transparent and collaborative venue to interested stakeholders: states, provincial and federal policy makers, consumers, environmental interests, transmission planning authorities and market participants that generate, transmit or consume electricity within the Eastern Interconnection.

The purpose of the Steady State Modeling and Load Flow Working Group (SSMLFWG) is to:

- 1. Modify/create steady state load-flow models
- 2. Conduct steady-state load-flow analysis (including transfer capability)
- 3. Report results as required/necessary

The EIPC Web site contains a detailed description of the work to be performed as part of the DOE funding:

http://eipconline.com/uploads/SOPO_14Jul10_DE-OE0000343.pdf

For an overview of the process, related to the DOE funding, that will be employed by the EIPC SSMLFWG, see the flowchart depicted in Figure 1 below. Dates represented are tentative and for illustration purposes only.

Figure 1 – EIPC Planning Analysis Process

Section 2 2020 Roll-up Integration Plans

2.1 Introduction

This section details assumptions made by each PA in developing the 2020 roll-up integration case. This includes load forecasting, the treatment of demand resources and energy efficiency, interchanges with other systems, future transmission and generation project inclusion, and generation dispatch.

In some cases, one or more PA systems may be incorporated into the model roll-up of another PA, without duplication. For example, Midwest ISO has incorporated into the Midwest ISO roll-up input from the Midwest ISO members American Transmission Company LLC (ATC LLC) and International Transmission Company (ITC) which are also Planning Authorities that are participating in the EIPC study. In the Planning Authority specific subsections below, the Midwest ISO portions includes the integration of the ATC LLC and ITC system information. In addition, Georgia Transmission Company and MEAG have noted where their information for certain sections are included in Southern Company's responses.

In creating the 2020 roll-up integration case, the 2009 Series, 2020 Summer Peak, Eastern Reliability Assessment Group, Multi-Region Modeling Working Group ("ERAG MMWG") case was the starting point. Each PA updated their portion of that model, or submitted new models of their respective systems, which were then assembled into one complete power flow model. The case went through several iterations of review and validation by the working group in order to assure the accuracy of the database before any study work was performed.

2.2 Load Forecasts and Growth Rates

The following section describes the load growth rates represented in the roll-up integration case for each EIPC Planning Authority through the year 2020. In addition to the growth rates, the amount of load, and origination of the data are discussed. The annual average growth rates are the rates used by each PA in their regional transmission planning processes. The rates vary from a minimum of -0.63% to a maximum of 3.00% over the ten year period from 2010 to 2020.

The load forecasts provided by each PA were based on the 50/50 load projection where there is a 50% chance the actual load will be higher or lower than the forecast. The load forecasts were not adjusted to provide a coincident peak for the entire eastern interconnection. It is appropriate to apply non-coincident peak load forecasts when planning for transmission needs over large regional areas, and is in fact the obligation of each NERC registered PA to plan for the critical system conditions for the area in which they are responsible. This approach provides for assurance of reliable transmission system performance of each PA, as required by the NERC Reliability Standards.

Because the roll-up integration case is based upon current transmission plans as of 2010, the vintage of the aggregated LSE forecasts is generally late 2009 or early 2010.

Alcoa Power Generating

Alcoa Yadkin Division's load growth from 2010 to 2020 is less than 1.0% Alcoa serves its own load. The load forecast is based on a history of usage. There are no loads other than Yadkin's in their area. Alcoa Tapoco Division's load is included in TVA's load.

Duke Energy Carolinas

Duke Energy's load forecasting group developed the load forecast in 2009 utilizing data including the forecasts of individual LSE's in the DEC footprint. Duke Energy Carolinas (DEC) expects an average growth rate of 1.6% through 2020 summer for a control area load of approximately 22,380 MW.

Electric Energy Inc.

Electric Energy Inc. has no native load and therefore does not compile a load forecast.

Entergy Services

The 10 year load growth provided by the LSEs (non-coincident) within the Entergy control area averaged 1.3% for the period 2010 through 2020 totaling to a projected load of 28,864 MW in 2020. The load forecasts contained in the 2020 Roll-Up were developed in 2009 based upon 2009 actual load values. The most recent peak demand provided by the LSE is used because it reasonably reflects load adjustments (e.g., losses, load growth, load reductions, cogeneration) that would have occurred prior to the peak load period. If there are significant load changes (additions or reductions) that occurred within the System after the summer peak, the load forecast is adjusted to take these changes into consideration. The LSEs are required to provide a load forecast annually to the Transmission Provider. The types of loads represented in these load forecasts include the loads of the following customer types: retail, wholesale (including wholesale load under the Tariff and grandfathered agreements), industrial, nuclear generating facility, and cogenerating facility.

Florida Power & Light

The load modeled in the FPL area in the 2020 roll-up integration case reflects an average annual growth rate of 1.97% up to the 2020 period. The load assumptions are based on then official FPL 2009 load forecast as filed with the Florida Public Service commission in the Ten Year Site Plan (TYSP) document.

Georgia Transmission Company

A load forecast is prepared annually through input from GTC's member cooperatives. The load forecast included in the roll-up case was prepared in 2009, and the average annual growth rate is 3.0% for the period 2010 to 2020. GTC's forecasted load is included in the Southern Balancing Authority as coincident with other Georgia load.

Independent Electricity System Operator

The IESO, in conjunction with the Ontario Power Authority, produces load forecast regularly. As of November 2009, the Ontario normal weather peak demand for Summer 2020 was forecasted to be 22,645 MW, reflecting a net annualized 10 year growth rate of -0.63%. The normal weather scenario is based on historical weather from the past 31 years and represents typical weather on a monthly basis.

The main reasons for the reduction of the Ontario demand are lower economic growth, energy conservation, utilization of embedded generation and changes in electricity consumption patterns due to the introduction of time of use rates at the residential level.

ISO New England

ISO New England (ISO-NE) expects an average annual growth rate of 1.20% through 2020 summer for a control area demand (load & losses) of approximately 31,028 MW, based on load forecasts in the ISO-NE 2010-2019 Forecast Report of Capacity, Energy, Loads, and Transmission ("CELT"). For the purposes of this model, this projection was down-rated by 4% to 29,787 MW to eliminate the impact of transmission system losses. With the addition of 2,767 MW of Demand Resource load reduction, the ISO-NE estimates the control area demand (load & losses) to be 27,019 MW.

State	2020 CELT Load Forecast (MW)	Down-rated by 4%*
Maine	2340.3	2246.7
New Hampshire	2850.4	2736.4
Vermont	1195.1	1147.3
Massachusetts	14461.5	13883.0
Rhode Island	2065.2	1982.6
Connecticut	8115.5	7790.9
Total	31,028.0	29786.9

* Eliminates projection of transmission system losses in 2020 CELT Load Forecast

JEA

The total internal demand (firm and non-firm demands) for the summer peak for JEA is forecasted to increase at an average annual growth rate of 2.0% to 3,557 MW for the summer of 2020; as used in the 2020 roll-up integration case. The forecast was done in April 2009 and incorporates the non-coincident peak demand from JEA's wholesale customer located adjacent to JEA's service territory in Northeast Florida.

LG&E and KU Energy

All Load Serving Entities (LSE) on the LG&E/KU transmission system provide load forecasts annually of the Network Load levels. The balancing authority forecasted load in the 2020 EIPC roll-up case is 8849 MW.

The LG&E/KU's native LSE load level is based on a 50/50 forecast with all curtail-able loads being served. The native load forecast was developed in the fall of 2009 and based on 2009 summer actual loads. The LG&E/KU native LSE expects an average growth rate of approximately 1.0% from 2010 through 2020.

MAPPCOR

Mid-Continent Area Power Pool (MAPP) Transmission Owners provide load forecast data annually through the MAPP and MRO model building process. The 2020 summer peak model was built using non-coincident peak load forecasts for 2020 reported by MAPP Transmission Owners in 2009. MAPP expects an average annual growth rate of 1.5% for the period 2010 through 2020 for a total projected load of 9,352 MW in 2020.

MEAG Power

A load forecast is prepared annually through input from MEAG's participants. The load forecast included in the roll-up case was prepared in 2009, and the average annual growth rate is 1.4% for the period 2010

to 2020. MEAG's load forecast is included in the Southern Balancing Authority as coincident with other Georgia load.

Midwest ISO

For Midwest ISO members, model load is reflective of Load Serving Entity forecasts as provided by the Transmission Owners through the Midwest ISO Transmission Expansion Plan (MTEP) reliability model building process. For transmission planning purposes, the non-coincident peak loads of the member systems is used in the MTEP models. This approach provides for assurance of reliable transmission system performance at the member system level, as required by the NERC planning standards.

Power flow model peak load projections were provided to the Midwest ISO by member systems in 2009 for the MTEP 2010 vintage model that was the basis of the EIPC roll-up for the Midwest ISO system.

The demand projections included in the roll-up integration case for the Midwest ISO portion of the EIPC roll-up case is consistent with the Midwest ISO 2010 Long Term Resource Assessment report which is available on the Midwest ISO web site at http://www.midwestmarket.org/publish/Document/6a7e86_12bc0f1b440_-7fc50a48324a?rev=1.

New Brunswick System Operator

The NBSO load forecast is reflective of the forecast provided by NB Power Distribution and Customer Service, the Load Serving Entity that supplies over 99% of New Brunswick customers. The 10-year load forecast is updated by January 31 of each year for the next 10-year fiscal period beginning on April 1. The most recent forecast is for the period 2010/11 to 2019/20.

Forecast average annual growth rate in New Brunswick between 2010/11 to 2019/20 is 0.6% for both annual energy and peak hourly demand. Peak demand is forecast as the coincident regional load.

New York ISO

The NYISO is forecasting a base 2020 summer peak load for the New York Control Area (NYCA) of approximately 35,300 MW which represents an average annual growth rate of 0.68% through 2020, as documented in the NYISO 2010 Load & Capacity Data report:

http://www.nyiso.com/public/webdocs/services/planning/planning_data_reference_documents/2010_Gol dBook_Public_Final_033110.pdf

PJM Interconnection

PJM annually prepares a detailed, independent load forecast for PJM and each of its zones and subregions. The January 2010 forecast is the basis for the PJM system contained in the EIPC roll up system. The complete underlying assumptions and process for the development of this forecast are found at <u>http://www.pjm.com/planning/resource-adequacy-planning/load-forecast-dev-process.aspx</u>. Summer peak load growth for the PJM RTO (including the integration of the ATSI system that is scheduled for 2011) is projected to average 1.7% per year over the next 10 years, and 1.4% over the next 15 years. These growth rates are calculated assuming the ATSI system is in PJM in both the start and end years. (ATSI integration into PJM is scheduled for June 1, 2011.) The PJM RTO summer coincident peak is forecasted to be 174,724 MW in 2020, a 10-year increase of 26,933 MW, and reaches 182,665 MW in 2025, a 15-year increase of 34,874 MW. Annualized 10-year growth rates for individual PJM zones range from 1.0% to 2.5%. The roll up case is based on the PJM coincident peak forecasts prepared by PJM, however, also

include non-coincident peak forecasts that are used in the series of annual planning analyses. In addition, the annual series of planning analyses examine ranges of load levels.

PJM Zone	2010 Coincident Peak Load (MW)	2020 Coincident Peak Load (MW)	Average Annual Growth Rate
AE	2,628	3,308	2.3%
BGE	7,173	8,571	1.8%
DPL	3,873	4,421	1.3%
JCPL	6,203	7,312	1.7%
METED	2,803	3,309	1.7%
PECO	8,212	9,432	1.4%
PENLC	2,710	3,275	1.9%
PEPCO	6,787	7,601	1.1%
PL	6,883	7,893	1.4%
PSEG	10,523	11,943	1.3%
RECO	417	474	1.3%
UGI	182	201	1.0%
AEP	22,358	25,469	1.3%
APS	8,328	9,506	1.3%
ATSI	N/A	14,084	N/A
COMED	21,652	26,723	2.1%
DAY	3,207	3,638	1.3%
DLCO	2,757	3,176	1.4%
DOM	19,056	24,389	2.5%

PowerSouth Energy Cooperative

PowerSouth (a G&T Cooperative) receives load data from each of its member owner distribution cooperatives. This data is then manipulated into a coincident peak number for PowerSouth's area. The load forecasts contained in the 2020 Roll-Up were developed in 2010 based upon 2010 data. PowerSouth's calculated annual growth rate for the period 2010 through 2020 is 1.6%.

Progress Energy Carolinas

Progress Energy Carolinas (PEC) updates its power flow models on an annual basis. Loads plus losses at the transmission level will be scaled to match the system forecast for each load level. Progress Energy Carolinas (PEC) expects an average growth rate of 1.8% of its area through 2020 summer for a balancing area load of approximately 15,476 MW. The load forecast contained in the roll-up integration case was developed in early 2009 and is based on coincident peaks provided by the LSEs.

Progress Energy Florida

Progress Energy Florida (PEF) updates its power flow models on an annual basis. Loads plus losses at the transmission level are scaled to match the system forecast for peak load level. Progress Energy Florida (PEF) expects an average growth rate of 1.2% of its area through 2020 summer for a balancing area load of approximately 14,160 MW. The load forecast contained in the roll-up integration case was developed in early 2010 and is based on non-coincident peaks provided by the LSEs.

Santee Cooper

The load forecast used in the EIPC roll up model was prepared by Santee Cooper in conjunction with Central Electric Power Cooperative, Inc. staff and a consulting firm. The load forecast incorporates updates of the end-use/econometric models developed by consulting firm and is based on normal weather assumptions. The forecast utilizes historical data and a current economic outlook for Santee Cooper's service areas. The forecast for industrial customers reflects any additions and changes to existing contracts. The load forecast includes estimated demand and energy savings from future energy efficiency programs to be implemented by Santee Cooper and Central. The load forecast used in the roll up case has approximately 333 MW of Energy Efficiency and Demand Side Management reduced from the gross load forecast to produce a net peak load for the 2020 summer peak load of approximately 6,558 MW which represents an average annual growth rate of 2.6% through 2020.

South Carolina Electric and Gas

The average annual load growth provided by the LSEs within the SCE&G planning area is 1.74% for the 2010 through 2020 period. This load growth results in a projected peak load of 5,824 MW in 2020 including load and transmission losses. The load forecasts contained in the 2020 roll-up case were developed in 2009 and are based on 2009 assumptions, data and information. The LSEs within the SCE&G planning area use historical normal weather patterns and various econometric models in determining peak demand forecast. Each individual LSE develops a forecast that accounts for the individual peak demand forecast. The individual peak demand forecasts are then aggregated by summing these forecasts to develop the SCE&G non-coincident forecast.

Southern Company

The 10 year load growth provided by the LSEs (non-coincident) within the Southern Balancing Authority averaged 2.13% for the period 2010 through 2020 totaling to a projected load of 57,385 MW in 2020. The load forecasts contained in the 2020 Roll-Up were developed in 2009 based upon 2009 actual load values.

Southwest Power Pool

Southwest Power Pool (SPP) expects a regional compound load growth rate of 1.4% per year through 2020. This forecast was produced by SPP in 2010 and approved by its members. The regional coincident forecasted peak load for 2020 is roughly 59,000MW.

Tennessee Valley Authority

The load forecast used in roll-up integration case used TVA's official February 2010 delivery point load forecast provided by TVA's Forecasting & Competitive Intelligence (F&CI) group. This forecast is a coincident system summer peak forecast assuming normal weather patterns and a medium economic outlook. This load forecast is a 50/50 load projection; where there is a 50% chance the actual load will be higher or lower than the forecast.

TVA's load forecast for summer peak 2010 is 30,738 MW. TVA's load forecast for summer peak 2020, which was used in the roll-up integration case, is 37,213 MW. This reflects a 2.1% load growth over the next 10 years.

2.3 Treatment of Energy Efficiency and Demand-Side Resources

This section details the modeling of energy efficiency programs and demand-side resources in the EIPC roll-up integration case. Because of differences in programs among jurisdictions, the amount and treatment in the power flow model of energy efficiency or demand resources varies within each Planning Authority. For some Planning Authorities, these programs' effects are considered when developing the load forecast discussed in section 2.2 and for others, market mechanisms are used to treat these as energy resources. While treatment of these demand side programs varies across PAs, it is important to realize that many PAs do not net these demand impacts from the gross demand forecasts that are used in transmission planning models. The reason for this is that while demand side impacts are an essential part of resource requirement planning, the transmission system may be required to meet the gross demand if the demand side resources on a given day, or the contractual provisions associated with the demand resource may not require their use when there are alternative resources. As such, the load forecasts in the transmission planning model may be expected to differ from those developed for resource requirement planning.

For clarity, if the individual PA descriptions below contain the terms "included"," incorporated", "reflected", or "accounted for" to describe forecasts or modeled load, it means that the forecast in the case already has been reduced for these effects.

Duke Energy Carolinas

Energy efficiency efforts as required to meet state requirements have been incorporated into the load in the case. For 2020 summer, efficiency efforts constitute an approximate reduction of 450 MW of load modeled. Impact of the application of DSM was not included in modeled load.

Electric Energy Inc.

Since Electric Energy Inc. has no native load, a load forecast is not compiled. EE and DSM are not applicable.

Entergy Services

Entergy's load forecast projection included in the 2020 roll-up integration case takes into consideration energy efficiency impacts by utilizing EIA efficiency indices in the development of retail sales forecasts. Existing utility sponsored DSM programs are also accounted for in the peak load forecast. Incremental Utility-Sponsored DSM are new programs pending regulatory approval which have not been incorporated into the peak load forecast. It is estimated that successful implementation of these new programs could potentially result in a peak demand reduction of 825 MW for Entergy by 2020. The modeled loads do not reflect a reduction associated with interruptible contracts signed with large industrial customers in the area.

Florida Power & Light

The impact of higher energy efficiency based on the new 2005 and 2007 federal standards for lighting and appliance is factored into the load forecast. It is estimated the summer peak demand in 2020 will be approximately 2095 MW lower than it would have otherwise been absent energy efficiency. The impact of the application of DSM is not included in the modeled load.

Georgia Transmission Company

All demand-side management and energy efficiency programs are under the direction of GTC's individual member cooperatives. GTC does not administer any demand-side management or energy efficiency programs. The load forecast is based on actual measured load, and historical usage of load management and dispersed generation are added back into the annual results to represent total customer load. The load forecast incorporates the impacts of any energy efficiency programs used by GTC's member cooperatives.

Independent Electricity System Operator

The Ontario Power Authority is overseeing the Conservation and Demand Management programs in Ontario and provides projections of long-term peak-demand reduction due to those programs. The aggregation of energy efficiency and demand side programs included in the load forecast consists of 4,491 MW. These include: energy conservation, fuel substitution and changes in electricity consumption patterns due to the introduction of time of use rates at the residential level.

ISO New England

Energy efficiency measures that have cleared in the most recent Forward Capacity Auction (2010 FCA-4 for the Commitment Period June 1, 2013 to May 31, 2014) have been incorporated into the load in the model. For the summer of 2020, a total of 1,298 MW of Passive Demand Resources / Energy Efficiency (On-Peak and Seasonal-Peak) and 1,363 MW of Active Demand Resources / Demand Side Management (Real Time Demand Resource) were included for a total of 2,661 MW. This number was then adjusted up by 4% to 2,767 MW to account for transmission and distribution system losses; this is the actual amount reflected in ISO-NE's portion of the roll-up model.

JEA

No planned incremental energy efficiency programs are represented in JEA's demand forecast represented in the roll-up integration case. However, JEA's demand forecast does include a historical trend of applied energy efficiency improvements that have naturally occurred in the market place. Concerning load management and interruptible rate subscribers, JEA does not currently reduce the peak demand in developing the load flow models. Today, JEA's forecasted peak demand reductions from energy efficiency programs, load management programs, and interruptible rate subscribers have not reached a level warranting consideration in transmission capacity avoidance benefits

LG&E and KU Energy

The LG&E/KU native LSE load forecast in the EIPC 2020 summer model reflects a reduction in load of 500 MW as a result of energy efficiency programs and demand side management resources.

MAPPCOR

Energy efficiency efforts as required to meet state requirements are incorporated into the reported load in the model through the MAPP and MRO model building process. The impact of the application of DSM was not included in the modeled load. MAPP Transmission Owners load forecast for 2020 included an energy efficiency of 234MW.

MEAG Power

All demand-side management and energy efficiency programs are under the direction of MEAG's individual member participants. MEAG does not administer any demand-side management or energy efficiency programs. The load forecast is based on actual measured load, and historical usage of load

management and dispersed generation are added back into the annual results to represent total customer load. The load forecast incorporates the impacts of any energy efficiency programs used by MEAG's member participants.

Midwest ISO

For Midwest ISO members, load projections for planning horizon power flow models are provided by the member systems that perform their own load forecasting. Energy efficiency and demand-side adjustments are included in those load projections consistent with the local transmission planning practices of each member system. The demand projections in the 2020 power flow case for the Midwest ISO portion of the roll-up integration case is consistent with the Midwest ISO 2010 Long Term Resource Assessment report which is available on the Midwest ISO web site at http://www.midwestmarket.org/publish/Document/6a7e86 12bc0f1b440 -7fc50a48324a?rev=1. That report indicates the following projections for the plan year 2019, and the 2020 projections have been estimated based on information from that report:

	<u>2019</u>	<u>2020</u>
Unrestricted Non-Coincident	124,723	126,095
Estimated Diversity	5,613	5,674
Total Internal	119,110	120,421
Direct Control Load Management	467	467
Interruptible Load	2,874	2,874
Net Internal Demand	115,769	117,080

Note that the projections for Direct Control Load Management and Interruptible Load are not increased from values reported by LSEs for 2010. The underlying long term growth rate for the period 2010 through 2020 is 1.1%.

Also note that the above figures for Non-Coincident load include projections for ATSI system load based on our published 2010 Long Term Resource Assessment report. Because ATSI is intending to move to PJM in 2011, PJM has also provided a PJM system load forecast figure for 2020 that includes 14,048 for ATSI. The combined Midwest ISO and PJM peak load projections can be reconciled by taking into consideration the 14,048 MW PJM has included for ATSI. This treatment does not indicate any double counting of load with respect to the roll-up model however, as Midwest ISO and PJM have coordinated on the roll-up power flow case such that there is no double counting of load for the ATSI system in the case.

New Brunswick System Operator

Energy efficiency in New Brunswick for 2020 is forecast to be 90 MW. The forecast for DSM is zero. The energy efficiency forecast is provided by Efficiency New Brunswick, and it is incorporated into the base load forecast. Efficiency New Brunswick estimates are related to the following programs:

- Existing Homes Energy Upgrades Program
- Energy Efficient New Homes Program
- Upgrades Program for Multi-Unit Residential Buildings
- Retrofit Program for low-income households

New York ISO

Energy efficiency efforts as required to meet state requirements have not been fully incorporated into the load forecast as the programs are just beginning and a level of conservatism in the base case was desired. For 2020 summer, if the full targets of statewide required efficiency efforts were assumed to be fully met (15% by 2015), an additional reduction in the forecast peak of approximately 2,500 MW would occur. Impacts of demand side programs such as Emergency Demand Response Program (EDRP) are not included in the forecasted load. Interruptible load, and distributed generation resources of approximately 2,250 MW (referred to as Special Case Resources in New York) are not included.

PJM Interconnection

Load Management and energy efficiency (LM and EE) resources have been incorporated into the load forecast report based on amounts cleared in PJM markets through 2012. The 2012 values are used as assumptions throughout the forecast horizon. Projections for changes to LM and EE past 2012 are not currently factored into the forecasts although changes to this procedure are under consideration. PJM planning power flow models appropriately modify the loads and/or generation models for LM and EE resources depending on the type of planning analysis being performed. The loads in the 2020 rollup power flow case are based on unrestricted peaks which means that they are not adjusted for LM and EE. For 2020 summer, DR and EE constitute an approximate equivalent reduction of 549 MW of EE and 6823 MW of LM for a total of 7372 MW. Based on actual operations experience, LM called upon by PJM is fully available but limited in the number times it may be used. More detail regarding PJM's LM and EE can be found in the references of section 2.2.

PowerSouth Energy Cooperative

The PowerSouth load forecast for 2020 reflects a reduction in load of 15 MW as a result of energy demand side management resources (water heater program). This 15 MW reduction is reflected in PowerSouth's net peak load.

Progress Energy Carolinas

PEC has developed Energy Efficiency and DSM programs, estimated to total 1,427 MW for the year 2020, as required to meet state requirements. For the 2020 summer, Energy Efficiency constitutes an approximate reduction of 396 MW of load modeled in the power flow case. DSM constitutes an approximate potential reduction of 1,031 MW but is not modeled in the case.

Progress Energy Florida

PEF has developed Energy Efficiency and DSM programs, estimated to total 3,285 MW for the year 2020, as required to meet state requirements. For the 2020 summer, Energy Efficiency constitutes an approximate reduction of 1,525 MW of load modeled in the power flow case. DSM constitutes an approximate potential reduction of 1,732 MW but is not modeled in the case.

Santee Cooper

The load forecast used in the roll-up integration case was prepared by Santee Cooper in conjunction with Central Electric Power Cooperative, Inc. staff and a consulting firm. The load forecast incorporates updates of the end-use/econometric models developed by consulting firm and is based on normal weather assumptions. The forecast utilizes historical data and a current economic outlook for Santee Cooper's service areas. The forecast for industrial customers reflects any additions and changes to existing contracts. The load forecast includes estimated demand and energy savings from future energy efficiency programs to be implemented by Santee Cooper and Central. The load forecast used in the roll up case has

approximately 333 MW of Energy Efficiency and Demand Side Management reduced from the gross load forecast to produce a net peak load for the 2020 summer peak load of approximately 6,558 MW which represents an average annual growth rate of 2.6% through 2020.

South Carolina Electric & Gas

SCE&G is projecting 325 MW of energy efficiency programs in 2020. All of this was reduced from gross load forecast to produce the net peak load used for the SCE&G system in the EIPC roll-up integration case. SCE&G is projecting 210 MW of demand side management programs in 2020. None of this was reduced from the gross load forecast to produce the net peak load used for the SCE&G system in the roll-up integration.

Southern Company

The Southern Company load forecast for 2020 reflects a reduction in load of 996 MW as a result of energy efficiency programs and non-dispatchable (passive) demand side management resources. The modeling does not include dispatchable (active) demand side resources or real-time pricing resources which increase generation reserve margins but may not be relied upon to reduce particular transmission loadings.

Southwest Power Pool

There are no state requirements for energy efficient projects; however, individual SPP members do include energy efficient projects as well as DSM in the modeled loads. The expected DSM load in the 2020 roll-up integration case is 492 MW. Energy Efficiency projects total 248 MW for 2020.

Tennessee Valley Authority

TVA has an aggressive energy efficiency and demand-side management initiative, projecting over 2,400 MW under the program by 2020. TVA's demand-side management program primarily focuses in the areas of pricing products and direct load control of large industrial customers, HVAC equipment, and water heaters. TVA's energy efficiency programs are reflected in the load forecasts used in determining TVA's transmission expansion plan. However, TVA does not include the effects of demand-side management in these forecasts due to the difficulty in predicting which specific delivery points will be affected by these programs.

2.4 Interchange or Firm Transmission Service Modeled

The following section includes a description of the typical interchange or inter-area energy transfers modeled by each Planning Authority. Interchange data in the form of tables is included in Appendix E. For transactions between areas (import/export), full path transactions are included in the roll-up integration case, (where both the importing and exporting PAs recognize common commitments). Partial path transactions (where arrangements for transmission service have only been made with one party) are not included in the roll-up model.

Alcoa Power Generating

The 2020 roll-up integration case has no interchange for Alcoa's Yadkin division.

Duke Energy Carolinas

Duke has a net export to CPLE of 995 MW from IPP's at Rowan and Broad River Energy Center serving Progress Energy load, while NCEMC resources in CPLE and Duke are shared between the areas.

NCEMC also has an export 50 MW of its resources to serve its load in DVP (a part of PJM). Duke imports 268 MW from SEPA's generation on the Savannah River and 31 MW from SOCO to serve the city of Seneca, SC. The resultant net interchange is an export of 746 MW.

Electric Energy Inc.

The output of Electric Energy, Inc. generation is modeled as an export to AMIL.

Entergy Services

Entergy Electric System area interchange assumptions in the 2020 roll-up integration case include 1,139 MW of imports and 1,967 MW of exports, resulting in a net interchange of 828 MW. Values represented in Appendix E reflect long-term (one year or more) firm transmission service obligations.

Florida Power & Light

The scheduled net interchange modeled for the FPL area reflects the forecasted firm interchange transactions as coordinated with the other utilities within the FRCC Region. There are approximately 886 MW of imports into FPL's BA from inside the FRCC that are associated with unit ownership or PPAs. There are approximately 1590 MW of imports into FPL's BA from outside the FRCC that are associated with unit ownership or PPAs.

Georgia Transmission Company

GTC's information is included in the response from Southern Company.

Independent Electricity System Operator

Transmission service is not sold in Ontario; transactions at the interties are scheduled based on economic merit through the energy market. If a transaction is successfully scheduled, it will be provided with access to the transmission system. Therefore, IESO 2020 model has a zero net interchange.

ISO New England

ISO New England's area interchange assumptions in the 2020 roll-up integration case include 2,381 MW of imports and 330 MW of exports resulting in a net import of 2051 MW. The majority of this interchange comes from 1500 MW imported from Quebec on HVDC lines to northern Vermont and eastern Massachusetts.

JEA

In addition to JEA's obligation to serve JEA's native retail territorial load, JEA also has contractual obligations to provide transmission service for the transmission-level customer and for delivery of contractual power from jointly owned and independent power producer plants. The transactions included in JEA's load flow model include all the firm long-term generation and transmission service capacities through the year 2020. In addition to JEA's territorial system ties supporting import and export capabilities, JEA also has allocation rights in the Florida/Georgia 500 kV tie import and export capacity. The power interchange used for this study includes 406 MW import from Georgia (Southern Company) to JEA and 259 MW export from JEA to the FRCC region; with a resultant 147 MW net power interchange (import) in the 2020 roll-up integration case.

LG&E and KU Energy

LG&E/KU's area interchange assumptions in the 2020 roll-up integration case include 1142 MW of imports and 441 MW of exports, resulting in a net interchange of -701 MW. Values represented in Appendix E reflect long-term (one year or more) firm transmission service obligations.

MAPPCOR

The 2020 MAPP model includes an area interchange value of 703 MW MAPP imports and 3,192 MW MAPP exports for a net interchange value of 2,489 MW.

MEAG Power

MEAG's information is included in the response from Southern Company.

Midwest ISO

For Midwest ISO members, internal interchange is based on the market dispatch. Inter-regional interchange is determined based on currently known net firm drive-in and drive-out transactions between Midwest ISO member control areas and external control areas. The amount of net interchange between the Midwest ISO and its neighboring Planning Authorities is unchanged from the corresponding ERAG case. Please refer to Appendix E for detailed interchange information. Import and export transactions have been agreed to and are consistent with those of external PA regions. Midwest ISO 2020 model includes 8,986 MW of imports, and 4,076 MW of exports, for a net interchange of 4,911 MW.

New Brunswick System Operator

The NBSO area interchange assumption is 600 MW export from New Brunswick to New England even though the interface has a 1000 MW of capability. This 600 MW number is reflected in the New England section of Appendix E: Area Interchange Table.

New York ISO

The NYISO coordinates its interchange schedule with its neighbors and represents firm transactions and the expected continuance of current external ICAP providers as listed in the NYISO 2010 Load & Capacity Data Report.

PJM Interconnection

PJM interchange with external systems included in the roll-up integration case model represents longterm firm interchange transactions and non-firm transactions chosen by individual Transmission Owners. This representation is a snapshot of what may be considered "typical" transactions. It is the agreed upon basis for assembly of interregional reference cases according to the Eastern Reliability Assessment Group, Multi-regional Modeling Working Group process. Since individual Planning Authorities must assemble interregional reference cases that interchange with many neighbors, this interchange is necessarily only a starting point value to be appropriately adjusted depending on the nature of the planning analysis being performed. The series of annual PJM RTEP transmission studies plan for firm interchange values between PJM and neighbors. PJM net firm interchange from neighbors in the 2020 roll up model is 433 MW and non-firm net interchange to neighbors is 899 MW for a total net export of 466 MW. Interchange among the areas internal to PJM are the free flowing result of PJM's single area market dispatch and do not result from transaction schedules like the interchanges between PJM and external areas. PJM's planning analyses examine thousands of dispatch scenarios. The internal PJM starting point interchanges, therefore, are not a focus of planning analyses.

PowerSouth Energy Cooperative

PowerSouth's area interchange assumptions in the 2020 roll-up integration case include 541 MW of imports and 1242 MW of exports, resulting in a net interchange of 701 MW. Values represented in Appendix E reflect long-term (one year or more) firm transmission service obligations as it relates to the transmission service provider.

Progress Energy Carolinas

PEC includes confirmed annual firm transmission service requests that are in accordance with resource projections provided by LSE's and executed contracts for the sale of firm energy. PEC has two balancing areas named CPLE and CPLW. The CPLE area model includes 1650 MW of imports and 449 MW of exports, resulting in a net interchange import of 1201 MW. The CPLW area model includes 1 MW of imports and 150 MW of exports, resulting in a net interchange export of 149 MW.

Progress Energy Florida

PEF includes confirmed annual firm transmission service requests that are in accordance with resource projections provided by LSE's and executed contracts for the sale of firm energy. PEF has one balancing area named FPC. FPC area model includes a net interchange import of 3888 MW.

Santee Cooper

The area interchange schedule consists of both imports and exports with a net interchange import of 1595 MW. Santee Cooper's scheduled imports for 2020 summer consist of Santee Cooper's share of Summer Units #1-#3 for a total of 1370 MW with additional imports scheduled under grandfathered contracts with Southeastern Power Administration for 275 MW. Santee Cooper's scheduled exports are for grandfathered exports to Woodland Hills for 16 MW, and to Charleston Navy for 15 MW and New Horizons (to SCE&G) for 19 MW. There are no firm transmission service requests modeled in the 2020 roll-up integration case.

South Carolina Electric & Gas

SCE&G's area interchange assumptions in the 2020 roll-up integration case include 72 MW of imports and 1,370 MW of exports, resulting in a net interchange of 1,298 MW exporting. Values represented in Appendix E reflect long-term (one year or more) firm transmission service obligations.

Southern Company

Southern Company's area interchange assumptions in the 2020 roll-up integration case include 2,200 MW of imports and 3,286 MW of exports, resulting in a net interchange of 1,086 MW. Values represented in Appendix E reflect long-term (one year or more) firm transmission service obligations.

Southwest Power Pool

SPP includes long term firm transmission service requests in models, as well as related projects with an approved FERC filed NTC ("Notification to Construct").

Tennessee Valley Authority

TVA's area interchange assumptions in the 2020 roll-up integration case include 139 MW of imports and 789 MW of exports, resulting in a net interchange of 650 MW. Values represented in Appendix E reflect long-term (one year or more) firm transmission service obligations.

2.5 Process for Future Transmission Project Inclusion

Each Planning Authority's planning process for inclusion of new transmission projects is described in this section. Since inclusion varies based on each PA process, the PAs have agreed to the following terms in order to describe the status of future transmission projects, which are used in Appendix B:

- <u>State/Budget Approval</u>: The project has obtained some level of contractual obligation, regulatory approval, or is included in approved capital budgets.
- <u>Planned:</u> The project has completed the respective Planning Authority's planning process, including any applicable regional planning process approvals (for example, ISO or RTO approvals), but specific contractual obligations have not been committed to, or regulatory approvals obtained.
- <u>Proposed:</u> The project has been proposed but has not yet completed the respective Planning Authority's planning process nor received applicable regional planning process approvals. In this case, the year in which completion of the process and applicable regional approval is expected is listed in Appendix B.

Alcoa Power Generating

Alcoa's Yadkin division has no plans for future generation or transmission expansions.

Duke Energy Carolinas

Transmission planning performed by DEC is a continuous process. This continuous transmission planning process consists of (1) internal screening and analysis, (2) coordinated studies with neighboring systems, and (3) development of a collaborative transmission plan with Progress Energy Carolinas under the North Carolina Transmission Planning Collaborative. The result of these efforts is identification of projects to upgrade existing facilities or addition of new facilities that are needed to meet DEC's transmission planning criteria and NERC reliability standards.

Transmission facilities that are approved and budgeted or where construction has begun have been included in the 2020 roll-up integration case. Other projects the planners believe have a high certainty of being in service in the year being modeled are also included. Engineering judgment has been applied such that a new or upgraded facility that is marginally necessary may not have been included in the base model so that the timing of the need for the facility can be accurately determined.

Electric Energy Inc.

Electric Energy, Inc. (through the services of consulting companies) performs an annual analysis and evaluation of the Electric Energy, Inc. transmission system response to generation and transmission system expansion plans, and expected power purchased by Electric Energy, Inc. and others through short-term and long-range transmission planning studies. The transmission system analysis is carried out through active participation in NERC and SERC committee work, as well as internal Electric Energy, Inc. transmission planning studies. The objective of Electric Energy, Inc. is to provide adequate electrical capacity and transfer capability to serve Electric Energy, Inc. customers with acceptable reliability, commensurate with cost, and to accommodate power transfers by others without excessively burdening the Electric Energy, Inc. system. Electric Energy, Inc. subscribes to all NERC and SERC planning standards, which are available from those organizations. The study models used for Electric Energy, Inc. planning are based on the ERAG Multi-region Modeling Working Group (MMWG) models and the

related SERC seasonal assessment models. Electric Energy, Inc. participates annually in building the MMWG models and in the preparation of seasonal assessment models for near term and long term summer and winter assessments as requested by SERC. Electric Energy, Inc. has no native load within its service territory. As a result, the net system import requirements are essentially zero. Historically, the Paducah Gaseous Diffusion Plant (PGDP) is the major customer for Electric Energy, Inc.. The general transmission planning philosophy is to provide adequate and sufficiently reliable generating plant outlet transmission capability to assure that the needs of the PGDP are satisfied, and during periods of light PGDP load, Electric Energy, Inc. has sufficient transmission transfer capability to export the full generation capacity.

Entergy Services

On an annual basis, Entergy develops its 10 year transmission plan which includes projects identified to support Load Serving Entities ("LSEs") and other long-term firm transmission customers under the Open Access Transmission Tariff (OATT) in delivering energy on a firm basis. Transmission projects in Entergy's transmission plan may include:

- Projects identified to meet long term reliability needs.
- Projects identified to meet long-term firm service commitments of LSEs and Point to Point transmission customers.
- Projects to interconnect new generation customers who have signed interconnection agreements.
- Projects associated with network reservations provided by LSEs for generation capacity necessary to meet their respective load obligations.

Entergy included in the 2020 roll-up integration case transmission projects identified in Entergy's 2010 – 2012 Final Construction Plan Update 4 posted on OASIS. The projects identified in Entergy's 2010 – 2012 Final Construction Plan Update 4 have been reclassified in order to conform with the agreed upon EIPC status categories of State/Budget Approval, Planned, or Proposed.

As transmission projects are identified or move forward towards implementation, all required laws and regulations are followed according to the specific jurisdiction to obtain necessary approvals. If the need for the transmission project is due to the planned addition of a supply-side resource, then approval for that project is generally sought in the certification proceeding for that resource. Furthermore, the states also vary with regard to which transmission projects have to receive specific state certification approvals.

Florida Power & Light

Future projects that have undergone FPL's internal budget review process as well as those projects that are representative of the Ten Year Site Plan (TYSP) filing with the Florida Public Service Commission are included in the roll-up integration case.

Georgia Transmission Company

GTC performs transmission planning studies on a continuous basis to identify needed transmission improvements. These studies identify transmission improvement projects required to support the load-serving needs of GTC's member cooperatives and GTC's long-term firm transmission tariff customers. GTC also identifies projects to interconnect new generation, as applicable. In order to jointly plan for future transmission expansion, study recommendations are reviewed and coordinated with other transmission owners in Georgia. GTC also reviews study work performed by other transmission owners

in Georgia and coordinates with utilities in surrounding regions. Transmission improvement projects included in GTC's expansion plans were included in the roll-up integration case.

Independent Electricity System Operator

Planning in Ontario is conducted on two fronts - assessing future system conditions with known and expected facilities in place, and developing future plans on resources and transmission to meet the needs of the system. Both processes use applicable NERC reliability standards and NPCC regional reliability standards to evaluate the reliability performance of the proposed projects.

On the assessment front, the IESO, as the Planning Coordinator, conducts transmission and resource adequacy assessments as follows:

- An Ontario Reliability Outlook with a five-year horizon, that is issued annually;
- An 18-Month Outlook Update that is conducted semi-annually;
- A Review of Resource Adequacy with a 5-year horizon, submitted annually to NPCC, and
- A Review of Transmission Adequacy with a 5-year horizon, submitted annually to NPCC

These assessments provide an evaluation of the future conditions such as system constraints and resource adequacy based on planned system conditions; they do not propose resource or transmission plans to meet adequacy needs or to alleviate system constraints. Market participants use the information provided in the reports to make decisions on investments in the power system assets.

In 2005, the Ontario Government established the Ontario Power Authority (OPA) to address the longterm system planning. Part of the OPA's mandate is to develop an Integrated Power System Plan (IPSP) to provide an independent and integrated plan for conservation, generation and transmission over a 20 year period.

Through OPA's planning activities, the OPA identifies resource and transmission requirements, procures resources and promote conservation as required to ensure supply adequacy and respond to other system and policy needs. Transmission Owners develop options to meet the transmission facility proposals, which include route selections, line types, associated facilities, etc. These options are evaluated by the IESO through the System Impact Assessment (SIA) process, to evaluate system performance under forecast system conditions and when subjected to various contingencies.

The applicable seasonal peak power flow models developed annually by IESO for MMWG available in the most recent NERC ERAG Model series are updated to include all future transmission and generation projects in Ontario that passed the IESO Connection Assessment and Approval (CAA) process, along with any upgrades required to maintain the reliability of the IESO system including the future transmission and generation.

ISO New England

ISO New England's portion of the 2020 roll-up integration case includes all future projects that have been approved under Section I.3.9 of the ISO New England Tariff. Pursuant to Section I.3.9, the ISO reviews proposals for new generation and transmission facilities rated at or above 69 kV. If it is determined that a project would not have a significant adverse impact on the stability, reliability or operating characteristics of existing electrical infrastructure, the ISO would approve the project for interconnection to the grid. Projects that have reached this stage are assumed to be in service for the 2020 roll-up case.

In the case of transmission projects, projects submitted for review pursuant to Section I.3.9 are those which are being developed and generally supported as part of the New England regional transmission planning process.

JEA

JEA does not include any "Proposed" transmission projects in its load flow models. All projects sponsored by JEA in the roll-up integration case have the status of "State/Budget Approval". JEA's policy and practice is to only include "State/Budget Approval" projects (facility additions, modifications, retirements, or system topology changes) to the load flow transmission model if the inclusion of those projects represents the most probable future scenario. To JEA, this means that the projects have, as a minimum, undergone JEA's internal budget review process and have been approved for real estate activities associated with securing rights-of-ways or has been accepted in the capital budget process for legally appropriated funding in the upcoming fiscal year. However, JEA may decide not to add a project to the load flow models until real estate has been properly secured or has achieved a substantial chance of reaching successful acquisition.

LG&E and KU Energy

The primary purpose of LG&E/KU's transmission system is to reliably transmit electric energy from Network Resources to Network Loads. LG&E/KU has established Transmission Planning Guidelines to gauge the adequacy of the transmission system to supply projected Network Customer demand and contracted Long-Term Firm Point-to-Point Transmission Services. The Process is an annual cycle designed to incorporate external Network changes and to provide information for regional evaluation and coordination through the NERC ERAG model building process.

Seasonal peak power flow models are developed annually (first quarter) by LG&E/KU using each model year available in the most recent NERC ERAG Model series. The topology of the LG&E/KU transmission system is expanded to provide a more detailed representation of the 69 kV facilities and updated to reflect the current Transmission Expansion Plan. Network Resources and Network Loads are updated to reflect the most recent information from the Network Customers. Seasonal peak cases may also be developed without certain generator and/or major transmission additions to provide better models for interpolation between model years.

The Transmission Expansion Plan is evaluated and updated through screening, verification, area studies, facility studies, signed agreements, and other periodic studies. Generator and transmission contingency simulations are routinely performed to evaluate the adequacy of the transmission system against the no "Loss of Demand or Curtailment of Firm Transfer" requirements of the Transmission Planning Guidelines.

- Screening Generator and transmission contingencies are simulated on the Base Cases to identify overloads and low voltages not resolved by the Transmission Expansion Plan.
- Verification Projects in the Transmission Expansion Plan and issues identified in the screening are evaluated to determine the required completion date, to determine the upgrade or construction required and to identify the reason for the change. The required completion date is determined by interpolating flows between model years.
- Area Studies Area studies are performed prior to major construction to develop multiple long-term options that provide adequate transmission through the planning period. The least-

cost option is recommended for approval and the associated projects are incorporated into the Transmission Expansion Plan.

- Facility Studies Facility studies are performed following a request made by customers through the ITO by a Network Integrated Transmission Service (NITS), Designated Network Resource (DNR), or Point-To-Point (PTP) request. Multiple options with an associated cost and time frame to complete construction to provide the requested service is provided back to the customers through the ITO.
- Signed Agreements Construction and upgrades associated with Generator Interconnections, Transmission to Transmission Interconnections, and Network Service requests executed by the requestor, which have been submitted to and evaluated by the ITO and LG&E/KU in the previous year, are incorporated into the Transmission Expansion Plan.

Periodically, studies are performed to evaluate the adequacy of the LG&E/KU transmission system against the allowable "Loss of Demand or Curtailment of Firm Transfer" requirements and "System Stability". Necessary construction and upgrades identified by these studies are incorporated into the Transmission Expansion Plan.

Annually, the LG&E/KU Transmission Expansion Plan is submitted to the ITO and RC for independent review, evaluation and comment regarding any outstanding issues that should be addressed. The final plan developed by the Transmission Owner must be approved by the ITO.

MAPPCOR

MAPP's expansion planning process is an annual process for the 10-year planning horizon. For this 10year planning horizon needed enhancements to the existing transmission system are identified for the next 10 years. The expansion of the transmission system is based on MAPP's updated models with the ERAG MMWG models representing the external system. The transmission and resource assumptions included are the latest transmission expansion additions reported through the open process of the MAPP sub regional planning groups (SPGs) activity and sub regional plans submitted by the MAPP SPGs and approved through the MAPP Transmission Planning Subcommittee (TPSC). The transmission owner determines the future transmission projects that are included during the model building process.

MEAG Power

MEAG performs transmission planning studies on a continuous basis to identify needed transmission improvements. These studies identify transmission improvement projects required to support the load-serving needs of MEAG's participants and MEAG's long-term firm transmission tariff customers. MEAG also identifies projects to interconnect new generation, as applicable. In order to jointly plan for future transmission expansion, study recommendations are reviewed and coordinated with other transmission owners in Georgia. MEAG also reviews study work performed by other transmission owners in Georgia and coordinates with utilities in surrounding regions. Transmission improvement projects included in MEAG's expansion plans were included in the roll-up integration case.

Midwest ISO

The Midwest ISO produces a Midwest ISO Transmission Expansion Plan (MTEP) annually. This regional plan is produced in collaboration with transmission owning members and using a stakeholder process that is FERC Order 890 compliant. The regional plan, once approved by the Midwest ISO Board of Directors represents the recommended plan for the region, and the member transmission owners are bound by forming agreement to use a good faith effort to obtain all necessary state and local approvals and to construct the projects so approved for regional implementation.

The criteria applied by the Midwest ISO for including projects in the roll-up integration case was to include all transmission projects in the agreed upon EIPC status categories of State/Budget Approval, Planned, or Proposed. Midwest ISO included proposed projects that are pending approval in the current planning cycle MTEP 11 that began September 2010 and will conclude with Board approval December 2011, and other projects that are proposed to meet NERC reliability standards in the 2010-2020 ten year horizon, but that are targeted for regional approval after 2011.

New Brunswick System Operator

The transmission plan is produced each year by NBSO within the annual update of the NBSO 10-Year Outlook report. The transmission plan represents an analysis of the existing high voltage transmission network, and the development required to meet the forecast load in compliance with the established transmission planning criteria.

NBSO is responsible for ensuring that the integrated electricity system, at all times, has adequate capacity to satisfy all applicable reliability criterion. NBSO is also responsible for addressing congestion issues that impact the efficient operation of the Electricity Market.

NBSO, upon identifying a system adequacy issue or a congestion issue, will consult with Transmitters and Market Participants to develop technically feasible options for addressing the issue. These options will then be published on the NBSO website, along with a notice of intent by NBSO to request proposals to resolve the issue. Transmitters and Market Participants may then participate in a formal Request for Proposals process leading to the final selection by NBSO of the preferred project.

New York ISO

The NYISO Comprehensive Reliability Planning Process (CRPP) encompasses a ten-year planning horizon and evaluates the future reliability of the New York bulk power system. In order to preserve and maintain system reliability, the NYISO, in conjunction with Market Participants, identifies the reliability needs over the planning period and issues its findings in the Reliability Needs Assessment (RNA). A request for solutions to identified reliability needs is issued with the expectation that Market-Based Solutions will come forward to meet the identified needs. All resources (generation, transmission and demand response) are eligible for consideration as potential solutions. In the event that Market-Based Solutions are not sufficient, to meet the reliability needs in a timely manner, the process provides for the identification of Regulated Backstop Solutions proposed by designated transmission owners, and Alternative Regulated Solutions proposed by any market participant. The NYISO then evaluates all proposed solutions to determine whether they will meet the identified reliability needs. Thus, the Comprehensive Reliability Plan (CRP) is developed in conjunction with NYISO stakeholders and approved by the NYISO Board, which sets forth the resources, plans and schedules that are expected to be implemented to meet the Reliability Needs, if any, that were identified in the RNA. In the event that there are insufficient market-based solutions to meet an identified Reliability Need, the NYISO directs the Responsible Transmission Owner to proceed with developing its Regulated Backstop Solution. When the TO applies for necessary siting approvals at the state level, other developers may choose to propose an Alternative Regulated Solution for consideration. As provided in the NYISO Tariff, the NYS Public Service Commission will make the final determination as to which solution will proceed.

PJM Interconnection

PJM's annual Regional Transmission Expansion Plan (RTEP) process comprehensively examines the transmission system requirements to ensure the reliability, economy, competitiveness and comparability of service under the PJM Tariffs and Agreements. This process first identifies transmission system upgrades and enhancements to preserve grid reliability, the foundation of competitive wholesale power markets. The annual series of RTEP analysis also includes planning for Market Efficiency that: (1) advances planned reliability projects when there is sufficient economic benefit, (2) provides new projects that have sufficient Market Efficiency benefits to justify their expense, and (3) combines reliability and market efficiency projects when benefits are sufficient to justify added expenditures. A third facet of PJM planning annually reviews system operational performance, evaluates any issues and plans system upgrades resulting from periodic interregional reviews. This annual series of analyses produces the PJM baseline RTEP system. This system forms the foundation for the incremental assessment of queued requests for interconnection to the transmission system. PJM planning conducts a quarterly queue process that sequentially evaluates interconnection requests to determine incremental transmission upgrades necessary for their reliable interconnection and operation with the system.

This series of RTEP analysis is based on maintaining reliability, market efficiency and operational performance for committed uses of the system and reasonably anticipated load growth and new interconnections. The system is planned for new generation with signed Interconnection Service Agreements or signed Facility Study Agreements.

The recommended transmission upgrades resulting from this series of analyses are subject to ongoing review and input with PJM's stakeholders through the PJM committee process. The resulting RTEP projects are presented to the PJM independent Board of Managers periodically throughout the year for approval. RTEP approved projects are cost allocated, assigned for construction and proceed from planning into the project tracking and construction phase. At this point, entities that are assigned construction responsibility engage necessary design, siting and regulatory approval processes. PJM supports the need justification for projects as necessary throughout regulatory approvals.

The PJM RTEP process is ongoing. PJM's reference transmission case changes continuously as new needed RTEP upgrades are identified. At any point in time the PJM reference RTEP power flow includes predominately existing and planned, Board approved facilities. PJM planning only tracks and reports state regulatory approval status of the major "backbone" projects. The PJM reference power flow typically has some very recent necessary upgrades that are scheduled for approval at the next regularly scheduled Board meeting. These most often address recently identified RTEP baseline or queue project issues that surface in the continuous stream of analysis. The projects pending Board approval are represented as "proposed" in the PJM list of upgrades. Such projects typically become Board approved within months, therefore, for PJM, the "proposed" project label does not represent a material difference from "planned" facilities in regard to the "certainty" of the transmission projects going forward. All the listed PJM projects are required for system reliability by the specified dates and are very likely to proceed. The "certainty" of projects coupled with new interconnection requests, naturally, are linked to the business plans of the interconnection customer. All projects' progress toward completion is tracked and alternate plans or temporary mitigation actions are developed when issues may delay a project's completion. PJM's RTEP process includes both five year and 15-year dimensions assessment to meet all applicable

- NERC Planning Standards

 (http://www.nerc.com/~filez/standards/Reliability_Standards.html)
- RFC Reliability Principles and Standards (http://www.rfirst.org/Standards/ApprovedStandards.aspx)
- PJM Reliability Planning Criteria as contained in Manual M14B Attachment G (http://www.pjm.com/documents/manuals.aspx)
- Transmission Owner Reliability Planning Criteria as filed in their respective FERC 715 filing.

Five-year-out planning enables PJM to assess and recommend transmission upgrades to meet forecasted load growth and to ensure the safe and reliable interconnection of new generation and merchant transmission projects seeking interconnection within PJM. PJM's 15-year planning horizon permits consideration of many long-lead-time transmission options. These options often comprise larger magnitude transmission facilities that more efficiently and globally address reliability issues. Typically, these are higher voltage upgrades that simultaneously address multiple NERC reliability criteria violations at all voltage levels. A 15-year horizon also allows PJM to consider the aggregate effects of many system trends including long-term load growth, impacts of generation deactivation and broader generation development patterns across PJM.

PowerSouth Energy Cooperative

PowerSouth's transmission planning is a yearly, continuous process and is based on a rolling 10-year cycle, in which needed enhancements to the existing transmission system are identified. PowerSouth coordinates with Southern Company and South Mississippi Electric Power Association (SMEPA) to accurately model shared ownership resources, as well as area interchange values. PowerSouth also submits data to and participates in SERC's Long Term Study Group (LTSG) which is used to create the MMWG models. Projects in that area included in the model can be member-driven (i.e. new delivery point), reliability-driven (new bulk transmission) and/or as related to the NERC standards. PowerSouth, as a G&T Cooperative, is not under any state regulation authority. New transmission and/or generation projects are vetted through a board approval process.

Progress Energy Carolinas

PEC's transmission expansion plan is the compilation of transmission facility improvements and upgrades which are necessary for the transmission system to support the proposed resource assumptions, load forecasts, and firm transmission service requirements for the next 10 years in the most reliable and economic manner consistent with NERC Reliability standards. The expansion plan is based on information obtained through PEC's internal planning efforts as well as through the SERC Long Term Study Group, North Carolina Transmission Planning Collaborative, Southeastern Inter-Regional Participation Process, and joint studies with interconnected neighbors. Transmission facilities that are approved, committed & budgeted or where construction has begun are included in the models. Other projects the planners believe have a high certainty of being in service in the year being modeled are also included. Engineering judgment is applied such that a new or upgraded facility that is marginally needed may not be included in the base model so that the timing of the need for the facility can be accurately determined. Projects are included to meet N-1 contingency criteria. Furthermore, projects could potentially be included that have not been through the state certification process but that is not the case for the 2020 roll-up integration case used in this process.

Progress Energy Florida

PEF's transmission expansion plan is the compilation of transmission facility improvements and upgrades which are necessary for the transmission system to support the proposed resource assumptions, load forecasts, and firm transmission service requirements for the next 10 years in the most reliable and economic manner consistent with NERC Reliability standards. The expansion plan is based on information obtained through PEF's internal planning efforts, FERC Order 890 Attachment K process, as well as through the FRCC Long Range Study assessments, and other joint studies with interconnected neighbors. Transmission facilities that are approved, committed & budgeted or where construction has begun are included in the case. Other projects the planners believe have a high certainty of being in service in the year being modeled are also included. Most transmission projects are included to meet N-1 contingency criteria; however, some projects are included to meet credible N-2 criteria where there is no operating solution or acceptable Special Protection System to resolve.

Santee Cooper

Santee Cooper produces a 10 year Transmission Plan on an annual basis. The criteria for including projects in the roll up model are to include future projects that are budgeted and approved by executive management for implementation. Planned and uncommitted construction project are also included in the model, but only if the project is judged to be well-defined and it is very likely to be fully implemented. Results of assessments are used to determine if the current construction schedule of planned transmission facilities should be altered to reflect future system requirements. Proposed additions identified and verified throughout the assessment will be incorporated with a recommended schedule, as needed.

South Carolina Electric & Gas

SCE&G includes in its transmission models all transmission projects that are budgeted and approved to be included in the transmission expansion plan. Not all projects have a commitment to build as they are reviewed for need and modifications on an ongoing basis through the annual and iterative transmission planning process. These reviews occur in the form of assessments of the transmission system with and without these transmission improvements and are reflective of changes in assumptions and objectives of the transmission system based on LSE needs, transmission service commitments and resource interconnections. Transmission projects in SCE&G's transmission expansion plan and in the EIPC roll-up case include 1) projects required to meet NERC Reliability Standards and SCE&G Transmission Planning Criteria, 2) projects required for the provision of firm transmission service (Network and Point-to-Point), per the SCE&G OATT and 3) system upgrades associated with generator interconnections, per the SCE&G OATT.

Southern Company

On a continuous, iterative basis, ten-year transmission expansion plans are developed to support Load Serving Entities ("LSEs") and other long-term firm transmission customers under the Open Access Transmission Tariff (OATT) in delivering energy on a firm basis. Transmission projects in Southern's expansion plans and in the roll-up include:

- Projects to meet long-term firm service commitments of LSEs and Point to Point transmission customers.
- Projects to interconnect new generation customers who have signed interconnection agreements.
- For periods later in the ten-year planning horizon, projects associated with network reservations provided by LSEs for generation capacity necessary to meet their respective load obligations.

As transmission projects are identified, the requirements of state law are followed to obtain any requisite approvals to move forward with those projects. The level of formality varies within each of the different jurisdictions. If the need for the transmission project is due to the planned addition of a supply-side resource, then approval for that project is generally sought in the certification proceeding for that resource. Furthermore, the states also vary with regard to which transmission projects have to receive specific state certification approvals.

Southwest Power Pool

The Integrated Transmission Plan (ITP) is SPP's approach to planning transmission needed to maintain reliability, provide economic benefits and achieve public policy goals to the SPP region in both the near and long-term. The ITP enables SPP and its stakeholders to facilitate the development of a robust transmission grid that provides regional customers improved access to the SPP region's diverse resources. Development of the ITP was driven by the need to develop a transmission backbone large enough in both scale and geography to provide flexibility to meet SPP's future needs.

The ITP is an iterative three-year process that includes 20-Year, 10-Year, and Near-Term Assessments and targets a reasonable balance between long-term transmission investment and customer congestion costs (as well as many other benefits).

The ITP creates synergies by integrating existing SPP activities: the Extra High Voltage (EHV) Overlay, the Balanced Portfolio, and the SPP Transmission Expansion Plan (STEP) Reliability Assessment. Consequently, and reaching the balance above, efficiencies are expected to be realized in the Generation Interconnection and Aggregate Transmission Service Request study processes. The ITP works in concert with SPP's existing sub-regional planning stakeholder process, and parallels the NERC TPL Reliability Standards compliance process.

Tennessee Valley Authority

TVA develops a ten-year transmission expansion plan on an annual basis to support the projected load forecasts within the TVA Balancing Authority (BA) area, as well as, other long-term firm transmission service customers under the Open Access Transmission Tariff (OATT) in delivering energy on a firm basis.

Transmission projects in TVA's expansion plans and in the roll-up include:

- Projects associated with network reservations for generation capacity necessary to meet system load obligations.
- Projects to meet long-term firm Point to Point transmission service commitments of transmission customers.
- Projects to interconnect new generation customers.

As a federal entity, TVA follows the requirements of the National Environmental Policy Act (NEPA) to move forward with identified transmission projects. If the need for the transmission project is due to the planned addition of a supply-side resource, then approval for that project is obtained through the approval for that resource. Planned system modifications are included in TVA's transmission expansion plan as the transmission projects obtain TVA officer approval during the planning process. Projects that do not have TVA officer approval are omitted from the transmission expansion plan to verify the continued need for the planned corrective action.

2.6 Major New and Upgraded Facilities

The following section includes a description of the major new and upgraded transmission facilities included in each Planning Authority's portion of the 2020 roll-up integration case. Major facilities are facilities of 230 kV or above. In addition to this section, a complete listing of major new and upgraded projects are tabulated in Appendix B of this report and categorized as defined in Section 2.5. Some projects may have multiple facilities listed that are a part of the same project. For example a long line project may have several line segments and substations between its end points.

Alcoa Power Generating

Alcoa's Yadkin division has no new or upgraded facilities planned.

Duke Energy Carolinas

DEC has included three new > 200 kV transmission projects in the 2020 roll-up integration case. DEC has a project to upgrade the conductor on its 230 kV line from Pisgah Tie to Shiloh Switching Station by 2013 in order to accommodate additional transmission service into CPLW. A new 230 kV tie line to CPLE will be completed by 2011 between DEC's Pleasant Garden Tie and CPLE's Asheboro Station to enhance reliability in the western area of CPLE. The Cliffside 6 generation project requires addition of a 500 kV tap station between Jocassee Tie and McGuire Nuclear Station by 2011. No other > 200kV projects are expected to be in service by 2020.

Electric Energy Inc.

There are no new Electric Energy, Inc. transmission facilities in the 2020 roll-up integration case.

Entergy Services

Entergy included in the 2020 roll-up integration case projects that have been identified to meet the reliability needs of the transmission system over the ten year planning horizon. These projects include constructing new 230 kV and 161 kV transmission lines, conversion of lower voltage lines to 230 kV operation, various upgrades of existing transmission lines, and the installation of additional 500 kV, 345 kV, and 230 kV autotransformers. Some of the projects included are also associated with transmission service request. A complete listing of all projects included in the roll-up integration case can be found in Entergy's 2010 – 2012 Final Construction Plan Update 4 posted on OASIS.

Florida Power & Light

The projects included in the FPL portion of the roll-up integration case are needed to meet FPL's regulatory requirements for the 10 year planning horizon. FPL has included twelve new transmission line projects in the 2020 model that will amount to an estimated total of 200 miles of new 230 kV and 86 miles of 500 kV transmission lines.

Georgia Transmission Company

GTC's information is included in the response from Southern Company. Please note that in Appendix B, transmission facilities listed under the PA "SOCO" also include GTC transmission projects.

Independent Electricity System Operator

Ontario is proposing to develop or enhance network transmission facilities to accommodate renewable resources. These transmission enhancements are planned to be in service by 2017. Additional

transmission development may be identified in the future when there are further developments on the resource options.

The 2020 roll-up integration case includes transmission system reinforcements in various parts of the province such as a new double circuit 500 kV line between Bruce and Milton, and the reinforcement of the Windsor area transmission. In addition, to accommodate new renewable energy generating facilities under the Ontario Feed-in-tariff (FIT) program and Ontario's agreement with the Korean Consortium several new transmission projects have been proposed at 230 and 500 kV. These plans are currently under review.

ISO New England

ISO-NE has included 45 new transmission projects at 230 kV and above in the 2020 roll-up integration case. Most of these projects are components of either the Maine Power Reliability Project ("MPRP") or the New England East-West Solution ("NEEWS"), two major 345-kV plans anticipated to be in service by 2020 in New England. Other projects include the Vermont Southern Loop 345-kV project, Long-Term Lower Southeastern Massachusetts (SEMA) project, a new 345-kV substation in Rhode Island, and several additional bulk autotransformers located in all six New England States.

JEA

The major "State/Budget Approval" projects included in the roll-up integration case are required to meet the generation and transmission performance requirements of JEA electric system as forecasted in the 10 year planning horizon. JEA currently is adding more generator capacity within its service territory and has power purchase agreements with other utilities to meet its future load demand. It also has plans to construct new transmission circuits at 230 kV and additional auto-transformation capacity from the 230 kV level to serve the 138 kV and 69 kV connected loads.

LG&E and KU Energy

LG&E/KU does not have any new or upgraded facilities 230kV and above in the 2020 roll-up integration case.

MAPPCOR

Below are the major new and upgraded transmission facilities included in the 2020 roll-up integration case for MAPPCOR.

Manitoba Hydro additions/upgrades:

- St Joseph Wind 1 and 2 to Letellier Substations with 4.8 mile connection 230kV lines planned to be built in 2010.
- Herblet Lake to Ralls Island 103 mile 230 kV line planned to be built in 2011.
- Herblet Lake to Wuskwatim 85.2 mile long double circuit 230 kV line planned to be built in 2011.
- St Vital to Letellier 77.7 mile 230 kV line planned to be built in 2012.
- LaVerendrye to St Vital 21.1 mile 230 kV line planned to be built in 2014.
- Dorsey to Portage South 43.5 mile 230 kV line owned by Manitoba Hydro is proposed to be converted to double circuit line by 2014.
- New Conawapa to Riel converter stations and 805 mile 500 kV bipole DC transmission line between Conawapa and Riel converter stations proposed to be built by 2017.
- Conawapa to Henday 19miles, 230kV quadruple circuit line proposed to be built by 2017.

- Conawapa to Long Spruce 34 miles, 230kV double circuit line proposed to be built by 2017.
- Dorsey to Riel 31 mile 500kV line proposed to be built by 2018.

South Dakota WAPA/BEPC facility additions/upgrades:

- Lower Brule 230kV substation is planned to be built.
- Big Bend to Lower Brule to Fort Thompson 11.4 mile 230kV line planned to be built.
- Witten substation is proposed to be upgraded from 115kV to 230/115 substation in 2012.
- Reliance 230kV substation is proposed to be built in 2012.
- Witten to Reliance to Big Bend 43 mile, 230kV line proposed to be built in 2012.

North Dakota WAPA/BEPC facility additions/upgrades:

- Watford City substation is planned to be upgraded from 115 kV to 230/115 substation in 2011.
- Wolf Point substation in Montana and Williston substation proposed 230kV line that will be operated at 115kV to be built by2012.
- Williston to Watford City 42mile 115kV line planned to be uprated to 230kv line in 2010, Williston to Tioga 45 mile 230 kV line planned to be built in 2010, and a Watford City to Charlie Creek 34 mile 115 kV line planned to be uprated to 230kV in 2011.

Minnesota facility additions/upgrades:

- Appledorn 230kV substation is planned to be built in 2011.
- Cass Lake 230/115 kV substation is planned to be built in 2011.
- Boswell (Bemidji) to Wilton (clay Boswell) 230kV, 72mile line is proposed to be built by 2012 and will pass through the new Cass Lake 230/115 kV substation.

MEAG Power

MEAG's information is included in the response from Southern Company. Please note that in Appendix B, transmission facilities listed under the PA "SOCO" also include MEAG transmission projects.

Midwest ISO

Major 345 kV line additions (20 miles or longer) that are either Planned, or have State/Budget approvals and that are included in EIPC 2020 Roll-Up case are:

- Gibson to AB Brown to Reid 345 kV line (64 miles)
- Hazelton to Salem 345 kV line (81 miles)
- Cardinal to Rockdale 345 kV line (32 miles)
- Maple River- Alexandria Waite Park Monticello 345 kV line (225 miles)
- Brookings County to Lyon County to Cedar Mountain to Helena to Lake Marion to Hampton Corner 345 kV line (206 miles)
- Hampton Corners to North Rochester to North La Crosse 345 kV line (118 miles)
- Rapson to Sandusky to Greenwood to Fitz 345 kV double circuit line (81 miles)
- Fargo to Maple Ridge 345 kV line (20 miles)

The following transmission projects are included in the model as Proposed projects, and are currently being evaluated for recommendation in 2011 to the Midwest ISO Board of Directors for approval. These projects are listed as "MVP" projects which in this case means that they or equivalent are intended to address the aggregate RPS requirements of Midwest ISO states by 2020.

			Expected	Expected
Duonaged Duoiset			In- Souviee	Regional
Proposed Project Description	Location	Miloogo	Dete	Approval
MUD1: 245 kW Line Prockings to Dig Stope	SD	25	2017	2011
MVD2: 245 kV Line Lakefield to Mitchell County		33	2017	2011
MVP5: 545 KV Line Lakeneid to Mitchen County	IA/IVIIN	80	2015	2011
MVP4: 345 kV Line Sheldon to Webster to	IA	250	2015-	2011
Blackhawk to Hazelton 345 kV line			2018	
MVP5: 345 kV Line Dubuque to Spring Green to	IA/WI/MN	260	2015-	2011
Cardinal and La Crosse to North Madison to Cardinal			2020	
MVP6: 345 kV Line Ellendale to Big Stone	ND	114	2019	2011
MVP7: 345 kV Line Thomas Hill to Adair to	IA/MO	206	2014	2011
Ottumwa				
MVP8: 345 kV Line Adair to Palmyra	МО	64	2018	2011
MVP9: 345 kV Line Palmyra to SE Quincy to	IL/MO	158	2015-	2011
Meredosia to Ipava, and Ipava to Meredosia to			2018	
Pawnee				
MVP10: 345 kV Line Pawnee to Pana	IL	22	2019	2011
MVP11: 345 kV Line Pana to Mt. Zion to Kansas to	IL	117	2019	2011
Sugar Creek				
MVP12: 345 kV Line Reynolds to E. Winamac to	IN	97	2013	2011
Burr Oak to Hiple				
MVP13: 345 kV Line Beaver to Davis Besse	OH	19	2013	2011
MVP14: 345 kV Line Sidney to Rising	IL	27	2017	2011

In addition, the following proposed projects are included in the roll-up integration case as identified solutions to reliability issues that are expected to occur in the 10 year planning horizon. The approval of these projects or equivalent by the Midwest ISO Board of Directors is expected after 2011.

IN

IL

WI/IL

192

102

6

2018

2016

2014

2011

2011

2011

MVP15: 765 kV Line Sullivan to Meadow Lk to

MVP18: 345 kV Line Fargo to Oak Grove

345kV Line Pleasant Prairie to Zion

Greentown

			Expected In-	Expected Regional
Proposed Project			Service	Approval
Description	Location	Mileage	Date	Date
345 kV Line Petersburg to Francis: Increase line	IN	111	2013	>2011
rating				
New 345/138 kV Fulton substation and transformer	OH	0	2014	>2011
345 kV Line Guion to Whitestown: Increase line	IN	11	2015	>2011
rating				
New 345/138 kV Tr. Sub 39 3-5	IL	0	2014	>2011
345 kV Line Sub 39 to MEC Cordova	IL	16	2014	>2011
345 kV Line Raun to Sioux City	IA	23	2016	>2011
345 kV Line Barnhart to Branch River	WI	36	2018	>2011
345 kV Line Branch River to Forrest Jct	WI	13	2018	>2011

New Brunswick System Operator

Major transmission projects proposed within the next 10 years that impact the NBSO bulk transmission system include:

- Refurbishment of the Eel River HVDC station between New Brunswick and Québec is under review.
- Planning studies are ongoing to propose transmission solutions that will reliably supply the forecast loads in Southeastern NB and meet the current and future needs of the interconnections with PEI and Nova Scotia.
- Proposed expansions of the interconnections between New Brunswick and neighboring jurisdictions include:
 - A new 345 kV line between NB and Nova Scotia by 2015.
 - A new 138 kV cable between NB and PEI by 2013.
 - Expansion of ties between Québec and NB, as well as NB and ISO New England, in order to accommodate Transmission Service Requests by Nalcor Energy for 2015.

New York ISO

NYISO has included in the roll-up integration case a new 345 kV controllable AC transmission project into New York City known as M29, various upgrades to existing 345 kV circuits within New York City, and a new 230/115 kV station in western New York.

PJM Interconnection

A complete list of all approved RTEP upgrades, as well as a brief description of the facility, upgrade driver and current status can be found on PJM's Web site via the following URL link: http://www.pjm.com/planning/rtep-upgrades-status/construct-status.aspx

The 230 kV and above line upgrades are provided in an appendix to this report. To keep the list manageable, it excludes many high voltage projects that strictly involve breaker replacement or bus work that does not affect lines, or upgrades to transformers to lower voltages. A subset of the upgrades reported in the appendix involves major "backbone" upgrades at 500 kV and above. The backbone

projects are best tracked on the planning pages of the PJM.com website. They can be identified by the descriptions that follow:

Project	Date Required for	Length	Status
	<u>Reliability</u>		
Carson-Suffolk 500 kV	June 1, 2011	60 miles in VA	State Approved and Under
			Construction
TRAIL 500 kV	June 1, 2011	215 miles In PA, WV	State Approved and Under
		and VA	Construction
Susquehanna-Roseland	June 1, 2012	146 miles in PA and NJ	State Approved, Extensive
500 kV			Land Acquisition
			Engineering Design, and
			Procurement complete and
			remainder under way.
PATH 765 kV	June 1, 2015	275 miles WV, MD and	State Approval pending,
		VA	Land Acquisition,
			Engineering Design, and
			Procurement are in
			progress
MAPP 500 kV and	June 1, 2014	80 miles of 500 kV and	Approval, Land
direct current		90 miles of DC in MD	Acquisition, Engineering
		and DE	Design, and Procurement
			are in progress
345 kV Line Pleasant	WI/IL	6	This is a MISO project
Prairie to Zion			proposed for 2014 that ties
			to PJM. The project is
			under joint review. This
			project may be proposed as
			a 2011 Supplemental
			RTEP Upgrade. Line will
			be "open" in the base roll
			up case.
765 kV Line Sullivan to	IN	192	This is a MISO project
Meadow Lake to			proposed for 2018 that ties
Greentown			to PJM. The project is
			under joint review. Line
			will be "open" in the base
			roll up case.

PowerSouth Energy Cooperative

PowerSouth has no major (200 kV and above) projects planned at this time.

Progress Energy Carolinas

PEC has included six new 230 kV transmission projects in the 2020 roll-up integration case. The first is a new 230 kV line from Richmond to Fort Bragg Woodruff Street Substation to accommodate new generation at Richmond in June 2011. A new 230 kV tie line to DEC will be completed by June 2011 between DEC's Pleasant Garden Tie and CPLE's Asheboro Substation to enhance reliability in the CPLE

area. A new 230 kV line will be constructed from Rockingham to West End Substation also by June 2011. By December 2011, a new 230 kV line from Clinton to Lee Substation will be completed. By June 2014, a new 230 kV line will be placed in service from Harris to RTP Switching Station. Finally, a new 230 kV line is planned from Greenville to Kinston by June 2017.

PEC has also included two new 230 kV substation projects in the 2020 roll-up integration case. The first is the conversion of the existing Enka 115 kV Switching Station to 230 kV by December of 2010. The second substation project is the construction of Folkstone 230 kV Substation which is a new networked 230/115 kV Switching Station scheduled for completion by June of 2013.

Progress Energy Florida

PEF has included four new 500 kV and six 230 kV transmission projects in the 2020 roll-up integration case. First these include two new 500 kV lines from Levy to Citrus, a new 500 kV line from Levy to Crystal River Plant, a new 500 kV line from Levy to Central Florida South, a new 230 kV line from Lake Tarpon to Kathleen, and a new 230 kV line from Crystal River Plant to Brookridge all to accommodate new generation at Levy in June 2021. Second a new 230 kV line from Loughman/Intercession City to Gifford by June 2013 to mitigate a credible double contingency and provide local area support for PEF load. Finally a new 230 kV line from Disston to Fortieth Street by June 2014 to increase reliability in PEF Suncoast load area, and a new 230 kV Line from Hines to West Lake Wales by June 2011.

Santee Cooper

Santee Cooper's major transmission projects for the period 2020 include continued development of a 230 kV transmission system necessary to deliver generator output to the load and maintain reliability of the transmission system. Santee Cooper has approximately \$830 million of planned and proposed additions and upgrades expected to be in service through the year 2020 for all classes. There are approximately 363 miles of new transmission projected to be added to the system for all voltage classes (69 -230 kV) through 2020.

South Carolina Electric & Gas

The major transmission improvements to the SCE&G transmission system that are included in the 2020 roll-up integration case include:

Project	Scheduled Completion Year
Pepperhill – Canadys 230kV	2013
Pepperhill – Church Creek 230kV	2013
VC Summer #1 – Killian 230kV	2015
VC Summer #2 – Lake Murray 230kV #2	2015
VC Summer #2 – St George 230kV #1	2018
VC Summer #2 – St George 230kV #2	2018
St George – Summerville 230kV	2018

Southern Company

The major upgrades within the Southern Balancing Authority that are included in the 2020 roll-up integration case include:

- a new 500/230 kV transformer at Autagaville substation in 2013
- the construction of a new 500/230 kV substation at East Walton in 2015

- the construction of a new 500 kV Switching Station (at Rockville) along the Scherer to Warthen 500 kV line in 2015
- the construction of a new 46.6 mi 500 kV line from Rockville to E. Walton in 2015
- the construction of a new 50 mi 500 kV line from Vogtle to Thomson in 2016
- the construction of a new 35 mi 500 kV line from South Hall to E. Walton in 2020

Southwest Power Pool

SPP includes reliability projects, as well as other projects deemed necessary due to either customer request or those for economic reasons. These projects typically have an NTC (Notification to construct). The SPP Transmission Plan includes a group of high priority projects noted as "Priority Projects". In April 2010 the SPP Board of Directors and Members Committee approved construction of these priority high voltage (345 kV) electric transmission projects estimated to bring benefits of at least \$3.7 billion to the SPP region over 40 years. The projects will improve the regional electric grid by reducing transmission congestion, better integrating SPP's east and west regions, improving SPP member's ability to deliver power to customers, and facilitating the addition of new renewable and non-renewable generation to the electric grid.

The approved Priority Projects are:

- Double-circuit 345 kV line from Spearville, KS, to Comanche County, KS, to Medicine Lodge, KS to Wichita, KS*
- Double-circuit 345 kV line from Comanche County, KS to Woodward, OK*
- Double-circuit 345 kV line from Woodward, OK to Hitchland, TX*
- Single-circuit 345 kV line from Nebraska City, NE, to Maryville, MO, to Sibley, MO
- Single-circuit 345 kV line from Valliant, OK to Texarkana, TX
- New reactor in Tulsa County, OK

* These double-circuit 345 kV lines are being reviewed as part of the ITP20 to see if existing NTCs need to be modified with higher voltage solutions which will be presented to the SPP BOD for action in January 2011.

The Balanced Portfolio was an initiative to develop a group of economic transmission upgrades that benefit the entire SPP region, and to allocate those project costs regionally. The benefits of this group of 345 kV transmission upgrades have been demonstrated by model analysis to outweigh the costs, and the regional cost sharing creates balance across the SPP region. The Balanced Portfolio contains a diverse group of 345kV transmission projects addressing many of SPP's top flowgates:

- The 250 mile "Woodward-Tuco" line between Hale County, Texas (north of Abernathy) and Woodward, Oklahoma.
- The 215 mile "Spearville-Knoll-Axtell" line between Spearville, Kansas (east of Dodge City); Hays County, Kansas; and Axtell, Nebraska.
- The 100 mile "Seminole-Muskogee" line between Seminole County and Muskogee, Oklahoma.
- The 36 mile "Sooner-Cleveland" line between Sooner Lake in Noble County, Oklahoma and Cleveland, Oklahoma.
- The 30 mile "Iatan-Nashua" line between Iatan and Nashua, Missouri (north of Kansas City).
- The Anadarko Autotransformer in Anadarko, Oklahoma.
- The Swissvale-Stilwell Tap near Gardner, Kansas.

Tennessee Valley Authority

The major upgrades to the TVA transmission system that are included in the 2020 roll-up integration case include:

- By summer 2011, the Gallatin FP Lafayette line overloads for loss of the Gallatin Primary -Portland line. The voltage at the East Gallatin 161-kV stations will drop below TVA planning criteria to 94.3% for the same outage. A new 161-kV line from Gallatin FP along with a new Angeltown 161-kV Switching Station will be built with a projected in-service date of June 2011.
- Load growth in the West Point, MS area is accelerating the need for additional 500-161-kV transformer capacity in the area. Current area forecasted load growth will exceed the capacity of the Lowndes and West Point 500/161-kV transformers. By summer 2011, Clay 500-kV Substation will add the additional 500/161-kV transformer capacity required to serve the area.
- New generation expansion at the Lagoon Creek site, will overload the existing Jackson 500/161-kV transformer for the loss of the Weakley 500/161-kV transformer bank. In addition to the Jackson bank overloading, there are five 161-kV line sections in the Jackson area that will overload if the Jackson 500/161-kV bank is lost. A project is in place to install a 2nd 500/161-kV transformer at the Jackson 500-kV Substation with a projected in-service date of 2011.
- By the summer of 2013, the 161-kV system cannot maintain adequate voltage in the Clarksville area for the loss of the Montgomery 500/161-kV transformer. Also projected load growth in the area, will overload the existing 500/161-kV transformer. A second 500/161-kV transformer will be needed at Montgomery 500-kV Sub to support the area.
- New generation capacity expansion in the Bellefonte, AL area will create the need to construct a new Bellefonte 500-kV Substation. This substation will terminate the existing Widows Creek Madison and the Widows Creek East Point 500-kV lines creating 4 new 500-kV line names. The projected in-service date of this project is June 2018.

2.7 Generation Assumptions (Additions and Retirements)

The following section describes assumptions related to modeling of new and retiring generation facilities. As with transmission facilities, a process for inclusion of new generation varies between different Planning Authorities.

A complete detailed listing of all new and upgraded generation projects included in the 2020 roll-up integration case is provided in Appendix C. Planning Authorities have agreed to the following terms to describe the status of future generation projects:

- <u>Committed:</u> The resource has completed the interconnection request process, or has obtained applicable transmission service.
- <u>Proposed:</u> The resource has been proposed and included in the planning process, but does not have applicable transmission service.

Alcoa Power Generating

Alcoa's Yadkin division has no generation changes planned for the future.

Duke Energy Carolinas

DEC generation facilities that are approved & budgeted and where construction has begun are included in the roll-up integration case. Non-DEC generation facilities that have a signed interconnection agreement are also included. DEC has included several new generation projects in the roll-up integration case. These are projects that Duke Energy is committed to building and has state approval for, or IPP's with a signed IA. The Duke units are Dan River combined cycle (620 MW), Buck combined cycle (620 MW) and Cliffside 6 fossil (825 MW). An IPP combustion turbine site has been included at Cleveland County (716 MW). All these facilities are presently under construction. Duke plans to retire all unscrubbed fossil units at Cliffside, Riverbend, Buck and Dan River by 2015, which total approximately 1300 MW. The 2020 roll-up integration case assumes the retirement of a number of small older Duke oil-fired combustion turbine facilities totaling about 250 MW by 2012.

Electric Energy Inc.

Electric Energy, Inc. has no generation additions or retirements in the 2020 roll-up integration case.

Entergy Services

Entergy generation modeled in the case includes all in-service units and any planned units that have firm transmission service scheduled from them after their completion. The resource plan assumed in the 2020 roll-up integration case is driven by the need to satisfy reserve margin obligations and to meet energy demand during system peak load conditions. Resources without long-term firm transmission service may be included in the model, but at zero output.

Florida Power & Light

Future projects that have undergone FPL's internal budget review process as well as those projects that are representative of the (TYSP) filing with the Florida Public Service Commission are included in the roll-up integration case. Approximately 4900 MW of additional generation (as compared with 2010) are included in the FPL 2020 case. All of these projects have gone through the FPL System Impact Study process and are part of FPL's official resource plan. FPL's TYSP filing serves as an input for the generation and load assumptions for modeling purposes. FPL is required to maintain a reserve margin of 20%.

Georgia Transmission Company

Generation resource assumptions are provided to GTC by its member cooperatives. Please note that in Appendix C, generation resources listed under the PA "SOCO" also include generation resources identified by GTC's member cooperatives.

Independent Electricity System Operator

Ontario is planning to phase out coal-fired generation by the end of 2014. Through this initiative, approximately 6500 MW of generation will be removed from service. In response to the phase out, Ontario has procured over 6000 MW of gas-fired generation with approximately 1100 MW of the procured resources are still yet to come online in the next few years. In addition, together with the proposed transmission developments, over 7000 MW of renewable generation resources, including wind, solar, biomass, and hydro, are planned to come online and connect to the Ontario grid, These resources include sources in the Feed-in-Tariff (FIT) program, Ontario's agreement with the Korean Consortium,

and other procurements by the Ontario Power Authority. These resource additions are anticipated to be online by the end of 2017, with further development still under planning assessments.

<u>Unit</u>	<u>System</u>	Announced Retirement Date
Lambton G1	Ontario	2010/10/01
Lambton G2	Ontario	2010/10/01
Lambton G3	Ontario	2014
Lambton G4	Ontario	2014
Nanticoke G1	Ontario	2014
Nanticoke G2	Ontario	2014
Nanticoke G3	Ontario	2010/10/01
Nanticoke G4	Ontario	2010/10/01
Nanticoke G5	Ontario	2014
Nanticoke G6	Ontario	2014
Nanticoke G7	Ontario	2014
Nanticoke G8	Ontario	2014
Atikokan G1	Ontario	2012 converts to biomass
Thunder Bay G1	Ontario	2014
Thunder Bay GS2	Ontario	2014
Thunder Bay GS3	Ontario	2014

ISO New England

ISO-NE has included several new generation projects in the roll-up integration case. These are projects that have been approved under Section I.3.9 of the ISO New England Tariff. Projects over 100 MW include uprates to a number of hydroelectric and steam turbine plants, as well as one new wind farm, three natural gas combined cycle plants, and four different gas combustion turbine projects. ISO-NE generally does not assume generation retirements unless a generator has taken formal action to withdraw from the Forward Capacity Market by submitting either a Non-Price Retirement Bid or a De-List Bid.

JEA

JEA is jurisdictional in the State of Florida and subject to Florida's "Electrical Power Plant Siting Act" and "Transmission Line Siting Act". The Department of Environmental Protection administers these Acts and under the statutes of these Acts, the Governor and Cabinet sit as the Siting Board and review applications for power plant and transmission line certification that reach certain minimum levels of impact. Not all power plants and transmission line constructions require Cabinet approval. The statutes for these Acts require the Florida Public Service Commission to review and grant the "Certificate of Public Convenience and Necessity" applications.

JEA annually produces a Ten Year Site Plan (TYSP) filing to the Florida Public Service Commission, which contains the 10-year forecast of demand and the associated resources required to meet JEA's 15% planning reserve target. The TYSP serves as the official source for the generation resources provided for in the FRCC load flow model. JEA is currently constructing a generation project within its service territory, consisting of two 150 MW natural gas-fired simple cycle combustion turbines, with a commercial operation date of summer 2011. JEA also has included in the roll-up integration case a "Proposed" project to convert these units to combined-cycle operation with the addition of heat recovery steam generators. JEA has obtained from the Florida Public Service Commission a Certificate of Public Convenience and Necessity; however, a final approval for the

conversion project is still pending Florida Cabinet approval. JEA currently does not have any plans to retire any existing generators in the ten year planning horizon.

LG&E and KU Energy

Resource assumptions contained within the 2020 roll-up integration case for the LG&E/KU were provided by the respective LSEs (and market participants through securing Point to Point transmission service). Resources without long-term firm transmission service may be included in the model, but at zero output. "Committed" resources include designated network resources and other resources which have secured long-term firm transmission service. "Proposed" resources are those provided by LSEs to meet their forecasted load service requirements in future years, but which have not been designated as a network resource pursuant to the OATT.

LG&E/KU currently has one "Committed" resource to interconnect a 120 MW generator being built by a 3rd Party IPP at West Irvine by 2013. This unit is not dispatched in the 2020 EIPC roll-up integration case.

MAPPCOR

MAPP area transmission owners determine which proposed or committed generation facilities are added in a model during the model building process.

MEAG Power

Generation resource assumptions are provided to MEAG by its member participants. Please note that in Appendix C, generation resources listed under the PA "SOCO" also include generation resources identified by MEAG.

Midwest ISO

Within the Midwest ISO, future generation resources modeled come from the Midwest ISO generation interconnection process and resource forecasts based on public policy requirements. Future generators with signed interconnection agreements are included in models. Future Proposed generators associated with public policies which are law (e.g. Renewable Portfolio Standards) are included at locations and in amounts consistent with the renewable energy zones agreed to by the Midwest ISO states via discussions with the Upper Midwest Transmission Development Initiative and the Midwest Governors Association. For the year 2020 roll-up peak load case, the amount of such "Proposed" generators dispatched in the case is 389 MW. These resources are listed as Proposed in Appendix C.

There are no publically announced retirements of generating units modeled in the Midwest ISO roll-up.

New Brunswick System Operator

In New Brunswick, generation retirements publicly announced in 2010 to 2020 period include:

- 5 MW at Musquash (January 2010)
- 57 MW at Grand Lake (March 2010)
- 100 MW at Dalhousie (May 2011)
- 200 MW at Dalhousie (May 2012)

New York ISO

The NYISO has included several new generation projects in its 2020 roll-up integration case. These are projects that have passed certain milestones to be included in the NYISO planning databases utilized in its Comprehensive Reliability Planning Process. Additionally, the model will represent the New York State

Renewable Portfolio Standard of 30% by 2015, which will require approximately 4,250 MW of installed nameplate wind turbine capability. Presently, there is approximately 1,300 MW of wind turbine power installed in New York. To meet the RPS goal, the case includes approximately 3,000 MW of proposed wind projects from the NYISO Interconnection Queue.

PJM Interconnection

Additional information on the PJM planning process is described in section 2.5. PJM is the independent planner and operator of the transmission system and power markets. The transmission system is planned for the forecasted load growth and interconnection requests that have reached a specified degree of commitment. This process is according to PJM's tariff, agreements, and business rules approved in the regulatory and stakeholder processes. In this capacity, PJM's business is only involved with generation when they initiate a request for interconnection to the transmission system.

In addition to existing in-service generation, the 2020 roll-up integration case incorporates generation with signed Interconnection Service Agreement (ISAs), generation with signed Facility Study Agreements (FSA), and announced generation deactivations (e.g., retirement). Since State Renewable Portfolio Standards (RPS) are the responsibility of the Load Serving Entities (LSE), PJM plans for the resources of the LSE's as they enter the generation queue and fulfill their interconnection commitments.

- Mid-Atlantic PJM included 500 MW of new generation with a signed ISA and 3,500 MW of projects with a signed facility study agreement.
- Western PJM included 1,000 MW of new generation with a signed ISA and 900 MW of projects with a signed facility study agreement. In addition, Catoctin generation was not modeled.
- Southern PJM included 500 MW of new generation with a signed ISA and 650 MW of projects with a signed facility study agreement.

PJM's power flow case transmission model includes the network upgrades necessary to accommodate the interconnection and operation of new generation for which an ISA has been signed and generation with a signed FSA.

A listing of all generation and merchant transmission interconnection requests in PJM's queues can be obtained from the following links:

Generation: <u>http://www.pjm.com/planning/generation-interconnection.aspx</u>

Merchant Transmission: <u>http://www.pjm.com/planning/merchant-transmission.aspx</u>. The appendix to this report provides a convenient list of these projects at the time this report is assembled.

Announced unit retirements that have been accepted by PJM are deactivated in the roll up power flow. A list of these units and scheduled deactivation dates can be found at <u>http://www.pjm.com/planning/generation-retirements.aspx</u>.

PowerSouth Energy Cooperative

Resource assumptions contained within the 2020 roll-up integration case for PowerSouth were determined through power supply studies and our annual capacity planning process. PowerSouth has no "Committed" resources between 2010 and 2020. There is one "Proposed" resource needed to meet our forecasted load growth before 2020. Resource additions in PowerSouth's generation expansion plan are not subject to approval by state regulatory agencies, but do require approval by RUS. PowerSouth and its members are not currently impacted by any state or federal Renewable Portfolio Standards. There are no planned generation retirements between 2010 and 2020.

Progress Energy Carolinas

PEC has included one new PEC generation project in the roll-up integration case at Richmond County Plant. In general new generation is included that PEC is committed to building and has state approval or IPP's with a signed interconnection agreement and firm transmission. PEC has recently announced plans to retire existing coal units at its Lee, Sutton, Weatherspoon, and Cape Fear coal plants. Retired generation will be replaced with combined cycle gas plants at Lee and Sutton Plants. These retirements are not reflected in the 2020 model.

Progress Energy Florida

PEF has included one new PEF generation project in the roll-up integration case at a new Levy County Plant site. In general new generation connected to the PEF is included in the model if the project is committed to by PEF or PEF customer. PEF has announced no plans to retire existing units prior to 2020, however, it has been announced that PEF will retire its Crystal River Coal Units 1 and 2 after the second unit at the Levy County site completes its first fuel cycle.

Santee Cooper

For the 2020 roll-up integration case, the generation assumptions include both existing generation and future generation as specified in Santee Cooper's current Generation Expansion Plan. The current Generation Expansion Plan, updated yearly, has Santee Cooper as a partial ownership with SCE&G in two nuclear units budgeted and scheduled for commercial operation in 2016 and 2019. The existing generation expansion plan includes all existing generating units in Santee Cooper system and assumes that there are no retirements of any type of generating units within Santee Cooper.

South Carolina Electric & Gas

Resource additions included in the 2020 roll-up integration case for SCE&G include committed generation projects that are under construction. These projects have been approved by the Public Service Commission of South Carolina.

LSEs within the SCE&G planning area have announced planned retirements in specific years within the next 10 years; however, specific generating units have not been identified to date. A potential generator retirement option is modeled in the roll-up integration case where the outputs of these potential retirement units are set at zero MW.

Southern Company

Resource assumptions contained within the 2020 roll-up integration case for the Southern Companies were provided by the respective LSEs (and market participants through securing Point to Point transmission service). Resources without long-term firm transmission service may be included in the case, but at zero output. "Committed" resources include designated network resources and other resources which have secured long-term firm transmission service. "Proposed" resources are those provided by LSEs to meet their forecasted load service requirements in future years, but which have not been designated as a network resource pursuant to the OATT.

Southwest Power Pool

SPP includes generation interconnection request projects that have a FERC filed IA (Interconnection Agreement). GI projects without an IA are not added to the models until the IA is executed. Generation projects without an IA are added as needed to address generation deficiencies.

Tennessee Valley Authority

Resource assumptions contained within the 2020 roll-up integration case for TVA are included in TVA's official capacity expansion plan and provided by TVA's System Planning group (and market participants through securing Point to Point transmission service). "Committed" resources include designated network resources and other resources which have secured long-term firm transmission service. "Proposed" resources are those included in TVA's official capacity expansion plan to meet forecasted load service requirements in future years, but which have not been designated as a network resource pursuant to the OATT. Evident in TVA's official capacity expansion plan is TVA's commitment for cleaner energy resources, filling base load requirements with Nuclear and peak load requirements with Gas expansion.

- In order to meet customer demand, TVA will complete construction on the 540 MW Lagoon Creek 2x1 Combined Cycle plant by October 2010. This project is currently Committed and under construction.
- By June 2012, TVA will complete construction on the 878 MW John Sevier 3x1 Combined Cycle plant. This project is currently Committed and under construction.
- By June 2013, TVA will complete construction on the 1204 MW Watts Bar Nuclear Unit 2. This project is currently Committed and under construction.
- By June 2018, TVA will complete construction on the 1192 MW Bellefonte Nuclear Unit. This project is currently Proposed and in TVA's capacity expansion plan.

2.8 Generation Dispatch Description

This section explains the methods used by each Planning Authority to dispatch the available generation in the 2020 roll-up integration case. All PAs apply methods of dispatching their systems that are representative of actual system dispatch that is expected to occur based on economic and physical considerations. The precise base case dispatch is not critical to determining transmission expansion plans as these plans are developed based on testing the systems against a variety of system configurations including variations from the base dispatch, to ensure reliable system performance consistent with applicable system performance standards.

Alcoa Power Generating

Alcoa's Yadkin division load is served from the Badin generator.

Duke Energy Carolinas

The DEC system generation dispatch is modeled according to economic dispatch in accordance with the priorities identified in the resource projections provided by LSE's and according to executed contracts for the sale of firm energy. Large base load fossil and nuclear units are dispatched with remaining load served by a mix of hydro, combined cycle and gas turbine generation.

Electric Energy Inc.

Electric Energy, Inc. resources are fully dispatched in the 2020 roll-up integration case.

Entergy Services

To meet the area requirements firm generation is dispatched in the model, followed by non-firm network resources, generation owned by the LSEs and then non-firm energy only resources. Entergy dispatches generation representing firm energy contracts and economically dispatches firm network resources for load. Additional generation is dispatched on a pro-rata basis in the following order: non-firm network resources, LSE-owned non-firm energy-only generation, then non-firm, energy-only resources within the BA that are owned by others.

Florida Power & Light

FPL's generation resources are dispatched on an economic basis in order to meet FPL's forecasted load and firm contractual requirements.

Georgia Transmission Company

The dispatch of the generation resources contained within the 2020 roll-up integration case is based upon the dispatch merit order identified in the resource projections provided by the Load Serving Entities (including GTC's member cooperatives). In addition, generating units associated with long term firm transmission commitments to external areas are dispatched "On" at an output level consistent with the interchange values discussed in Section 2.4.

Independent Electricity System Operator

The IESO system generation dispatch is modeled based on economic dispatch in accordance with the demand to be served and the resource projections for the scenario under study.

ISO New England

In real-time operations, ISO-NE dispatches generation through a competitive wholesale market that results in the lowest priced resources being dispatched to meet system demand for electricity. However, because of uncertainties in future costs and bids from existing and new generators, the generation dispatch in the 2020 roll-up case reflects a typical generation dispatch under summer peak conditions. Units that are typically among the least expensive (for example, nuclear, coal, and natural gas combined cycle) are dispatched, and units that typically have higher costs and bids (for example, oil combustion turbines and fast-start units) are left offline. The output of wind and hydroelectric generation will be modeled consistent with historical generation data for these units at summer peak load conditions.

JEA

All of JEA generators in the roll-up integration case are dispatched first on minimum contractual requirements and then on an economic basis.

LG&E and KU Energy

The LG&E/KU system generation dispatch is modeled according to economic dispatch in accordance with the priorities identified in the resource projections provided by each LSE.

MAPPCOR

MAPP Transmission owning members do their own generation dispatch and provide the value to our regional model building entity (MRO) and to the MAPP Transmission Reliability Assessment Working Group (TRAWG).

MEAG Power

The dispatch of the generation resources contained within the 2020 roll-up integration case to serve MEAG participant load is based upon the dispatch merit order identified in the resource projections

Midwest ISO

Midwest ISO members' generation is dispatched on a market-wide basis using security constrained economic dispatch (SCED) methodology. Renewable generation is set to desired level before applying the security constrained economic dispatch and renewable resources are not adjusted in the SCED process. Wind plants are dispatched at 5% of nameplate during summer peak condition.

New Brunswick System Operator

Generation in the New Brunswick Electricity Market is dispatched using security constrained economic dispatch (SCED) methodology. Wind resources are dispatched according to hour-ahead forecasts.

New York ISO

The NYCA system generation dispatch includes only the impact of firm external transactions. Generation dispatch is consistent with typical dispatch observed during peak load.

PJM Interconnection

Internal to PJM, the roll up model dispatch is based on a representative market based dispatch prepared by the planning department. Similar to the load representation in this model, the dispatch represents only a single snapshot of a representative dispatch as a starting point reference model. The annual series of PJM planning analyses examines thousands of alternative dispatch scenarios. Because of this and because PJM operates and is planned as a single system, these snapshot PJM dispatch values change moment to moment based on a single area market. The starting representative market dispatch therefore is not a focus for PJM planning analyses.

PowerSouth Energy Cooperative

The generation dispatch of the resources contained within the 2020 roll-up integration case is economically dispatched according to current fuel cost assumptions and availability.

Progress Energy Carolinas

The PEC system generation dispatch is modeled according to economic dispatch in agreement with the priorities identified in the resource projections provided by LSE's and according to executed contracts for the sale of firm energy.

Progress Energy Florida

The PEF system generation dispatch is modeled according to economic dispatch in agreement with the priorities identified in the resource projections provided by LSE's and according to executed contracts for the sale of firm energy.

Santee Cooper

The Santee Cooper generation dispatch used in the 2020 roll-up integration case is a strictly economic dispatch model. Nuclear units and large coal base load units are all dispatched first and then all other generating units are economically dispatched according to cost. There are no units dispatched out of merit to alleviate system loading constraints.

South Carolina Electric & Gas

The dispatch of generation resources within the SCE&G planning area is based on the economic dispatch merit order of the generating units and is set to meet the requirements of LSEs and executed contracts for the sale of firm energy with firm transmission service.

Southern Company

The generation dispatch of the resources contained within the 2020 roll-up integration case is based upon the dispatch merit order identified in the resource projections provided by the Load Serving Entities.

In addition, long term firm transmission commitments to external areas are dispatched "On" at an output level consistent with the interchange values discussed in Section 2.4.

Southwest Power Pool

Each SPP member dispatches its generation in the model to cover its own projected load obligations including any approved long term firm service transactions.

Tennessee Valley Authority

Market participants within TVA's Balancing Authority are dispatched at the level of their confirmed long-term firm transmission service. Production cost dictates the order in which TVA's generation fleet is dispatched in the 2020 roll-up integration case. TVA does not apply a security constrained dispatch to alleviate system constraints. The order of dispatch from most economic to least economic by generator technology is typically:

- Hydro
- Nuclear
- Fossil
- Pumped storage
- Combined Cycle Gas
- Combustion Turbine Gas

In addition, long term firm transmission commitments to external areas are dispatched "On" at an output level consistent with the interchange values discussed in Section 2.4.

Section 3 Interregional Transmission (Gap) Analysis

3.1 Introduction

Power flow analysis is often focused on forecasted summer peak conditions which represent the lowest thermal ratings of facilities and typically (but not always) their highest loadings. To perform power flow analysis on an interconnection-wide basis, in addition to the modeling developed by each Planning Authority, an underlying exchange of energy or Interchange among Balancing Areas must be established. It is common for Transmission Providers to have long-term firm transmission service commitments with market participants involving deliveries to other Balancing Areas, but for which the market participants have not made "matching" transmission service commitments with the associated Transmission Providers in the receiving Balancing Areas. Because market participants can and do purchase long-term firm transmission service on a so-called "partial-path" basis, determining the energy exchange or Interchange among Balancing Areas requires coordination.

The Interregional Transmission Analysis performed by the EIPC for the 2020 planning year is a power flow analysis based upon the 2020 roll-up model, which represents power system facilities and loads for the summer peak conditions forecast for 2020, as developed by each Planning Authority during their thencurrent planning cycle. The Interchange utilized for this analysis was developed though a coordinated effort of the EIPC Planning Authorities and is based upon a subset of transmission service commitments representing full path transactions from source to sink.

A detailed description of the analysis is provided in Section V of the "Steady State Modeling Load-Flow Working Group Procedure Manual". As described in Section V.E., each Planning Authority performed analysis within its boundaries of responsibility, consistent with NERC, regional (including applicable transmission owner criteria and RTO criteria) and local transmission planning criteria as applicable. In addition to the individual analysis performed by each Planning Authority, contingency analysis was performed in a collective manner as described in Sections V.C. and V.D.

The objective of this analysis is to identify potential power flow interactions from an interconnectionwide perspective that may result from the effects of plans of one Planning Authority on another. Because this particular set of power flows and energy exchange (Interchange) may differ from those assessed during local and regional planning activities, it is possible that additional constraints may be identified, particularly where interchange or generation dispatch patterns in other regions may differ from local commitments and assessments. To the extent additional constraints or "Gaps" are identified during the interregional analysis, these constraints and the accompanying power flow conditions will be referred to the respective regional planning processes of the PAs.

This task is a screening analysis and its results (potential gaps) will be referred to the regional planning processes of the Planning Authorities for detailed assessments. Detailed analysis may or may not indicate a need for system upgrades in future planning cycles. Items identified in the "gap" analysis should not be construed as necessitating modification of the baseline topology of the 2020 roll-up modeling to be applied in the scenario analyses of the SSC.

3.2 Interregional Analysis Criteria

3.2.1 Thermal and Voltage Criteria

System performance was assessed in a manner consistent with the NERC TPL reliability standards as described in Section V.D. of the "Steady State Modeling Load-Flow Working Group Procedure Manual". Bulk Electric System elements above 100 kV were monitored. Thermal and voltage criteria applicable to each facility were applied.

3.2.2 Contingency Selection

As described in the "Steady State Modeling Load-Flow Working Group Procedure Manual", Section V.C., contingencies representing outages of all transmission elements 230 kV and above and all transformers with a low-side voltage rating of 110 kV or above were performed. Planning Authorities were also given discretion to simulate contingencies of transmission elements below 230 kV depending upon the composition and characteristics of each PA's bulk electric system. (e.g. TVA simulated all 161 kV transmission element contingencies due to their extensive 161 kV network). Contingencies that were considered were provided by each individual Planning Authority.

3.3 Interregional Analysis Results

In this section, each Planning Authority has provided a list of the constraining facilities that were identified as a result of the collective or individual Planning Authority analysis. It is assumed that the constraints identified are the result of neighboring system interactions that have yet to be assessed in detail. In some cases, a potential reliability issue may be difficult to pinpoint as to its cause with respect to system interactions. Issues identified will be utilized to inform the regional planning processes of the Planning Authorities in future planning cycles (See Section 4, Enhancements).

3.3.1 Summary of Thermal Results

Alcoa Power Generating Nothing to report.

Duke Energy Carolinas Nothing to report.

Electric Energy Inc. No information was provided by this Planning Authority.

Entergy Services Nothing to report.

Florida Power & Light Nothing to report.

Georgia Transmission Company Nothing to report.

Independent Electricity System Operator Nothing to report.

ISO New England

Nothing to report.

JEA Nothing to report.

LG&E and KU Energy

Nothing to report.

MAPPCOR

Nothing to report.

MEAG Power

Nothing to report.

Midwest ISO

A thermal analysis of the Midwest ISO system in the 2020 Roll-Up case was performed. About a dozen thermal facility issues were identified which meet the reporting requirements of Section 3.1. If a branch was overloaded for multiple contingencies, the highest overload was listed. Most overloads are close to 100% of rating indicated. There were other issues identified, however, a majority of the events have previously identified mitigations plans which were not modeled in 2020 Roll-Up case. Many of the mitigation plans for multiple contingencies are operator actions. The items listed below are either planning coordination issues with neighboring Planning Authorities or internal Midwest ISO issues which are new to the 2020 Summer Peak Roll-Up model.

Facility Issue	Contingency
Lyons to Allen Junction 138 kV ckt 1 loads to 101.1% of 144 MVA rating	Base Case Overload
Benton Harbor 345/138 kV Transformer (AEP) ckt 2 loads to 102.6% of 540 MVA	345kV Twin Branch to Argenta Line Outage
Livingston to Livingston Peaker 138 kV ckt 1 loads to 101.6% of 136 MVA	345kV Gallagher Junction to Livingston Line Outage
Adams to Spokane 120 kV ckt 1 loads to 104.5% of 139 MVA	230kV Jewel to Spokane Line Outage
Kincaid (CE) to Pawnee West 345 kV ckt 1 loads to 109.9% of 717 MVA	345kV Pana North to Pawnee Line Outage
Troy(AECI) to Dardenne 161 kV ckt 1 to 100.9% of 218 MVA	345kV Montgomery to O' Fallon Double Circuit Tower Outage
Huster to McClay 138 kV ckt 1 loads to 102.4% of 255 MVA	138kV Fairfield Bus Outage
Joachim to Bailey Tap 138 kV ckt 1 loads to 129.5% of 287 MVA	345kV Gray Summit to Labadie Line Outage

Eastern Interconnection Planning Collaborative

Facility Issue	Contingency
Turkey Hill 345/138 kV Transformer ckt 1 loads to 113.5% of 672 MVA	345-138kV Baldwin Breaker and Transformer Outage

New Brunswick System Operator No information was provided by this Planning Authority.

New York ISO

Nothing to report.

PJM Interconnection

Facility Issue	Contingency
Lockport 'Red' – Lisle 'Red' 345 kV line loaded to	Loss of Lockport 'Blue' – Lisle 'Blue' 345 kV line
109.12% of 1528 MVA	
Goodings Grove 81 – Goodings Grove 'Red' 138 kV	Loss of Goodings Grove 'Red 2' – Goodings Grove
loaded to 104.29% of 480 MVA	'Red 1' 345 kV
Goodings Grove 'Red' – Goodings Grove 81 345/138	Loss of Goodings Grove 'Red 2' – Goodings Grove
kV line loaded to 104.29% of 480 MVA	'Red 1' 345 kV
McCook Midpoint 84 – McCook 'Blue' 138 kV line	Loss of Lockport 'Blue' – Lisle 'Blue' 345 kV line
loaded to 100.73% of 465 MVA	
McCook 'Blue' – McCook Midpoint 84 345/138 kV line	Loss of Lockport 'Blue' – Lisle 'Blue' 345 kV line
loaded to 100.35% of 465 MVA	
Benton Harbor 345/138 kV line loaded to 123.86% of	Loss of Benton Harbor – Cook 345 kV line
540 MVA	
Benton Harbor – Crystal 138 kV line loaded to 102.87%	Loss of multiple 138 kV lines
of 167 MVA	
Tristate – Darrah 138 kV line loaded to 102.7% of 245	Loss of Baker 765/345 kV line
MVA	
Peach Bottom – Cooper 230 kV line loaded to 172.02%	Loss of Conastone – Peach Bottom 500 kV line
of 485 MVA	
Cooper – Graceton 230 kV line loaded to 169.29% of	Loss of Conastone – Peach Bottom 500 kV line
485 MVA	
Glasgow – Cecil 138 kV line loaded to 160.16% of 234	Loss of Chichester '1' – Chichester '2' 230 kV line
MVA	
Safe Harbor – Graceton 230 kV loaded to 143.5% of 485	Loss of Conastone – Peach Bottom 500 kV line
MVA	
Otter Creek – Conastone 230 kV loaded to 143.36% of	Loss of Conastone – Peach Bottom 500 kV line
531 MVA	
Peachbottom – Conastone 500 kV loaded to 136.25% of	Base Case
2338 MVA	
Nottingham – Nottingham Reactor 230 kV line loaded to	Loss of Conastone – Peach Bottom 500 kV line
133.12% of 627 MVA	
Nottingham Reactor – Peachbottom 230 kV line loaded	Loss of Conastone – Peach Bottom 500 kV line
to 133.06% of 627 MVA	
Brunner Island – Yorkana 230 kV line loaded to	Loss of Conastone – Peach Bottom 500 kV line

Eastern Interconnection Planning Collaborative

128.82% of 617 MVA	
Steele - Oil City 138 kV line loaded to 124.63% of 159	Loss of Keeney – Steele 230 kV line
MVA	
Three Mile Island 500/230 kV line loaded to 120.59% of	Loss of Conastone – Peach Bottom 500 kV line
1072 MVA	
Linwood – Chichester 230 kV line loaded to 119.67% of	Loss of Chichester – Linwood 230 kV line and Phillips
983 MVA	Island units
Oil City – Church 138 kV line loaded to 117.16% of 159	Loss of Keeney – Steele 230 kV line
MVA	
Croydon – Burlington 230 kV line loaded to 108.36% of	Base Case
514 MVA	
Delco Tap – Mickelton 230 kV line loaded to 107.72%	Loss of Chichester '1' – Chichester '2' 230 kV line
of 725 MVA	
Tunnel – Parrish 230 kV line loaded to 104.68% of 905	Loss of Concorde – Lenape 230 kV, Concorde 230/35
MVA	kV and Lenape 230/35 kV lines
Manor – Safe Harbor 230 kV line loaded to 104.27% of	Loss of Conastone – Peach Bottom 500 kV line
579 MVA	
Essex – Hudson 230 kV line loaded to 102.96% of 815	Loss of Athenia – Cook Road 230 kV, Cook Road –
MVA	Kingland 230 kV and Kingland – New Jersey Transit
	Meadows 230 kV lines
Yorkana – Otter Creek 230 kV line loaded to 102.19%	Loss of Conastone – Peach Bottom 500 kV line
of 793 MVA	
Edge Moor – Claymont 230 kV line loaded to 102.18%	Loss of Linwood – Edge Moor 230 kV line
of 805 MVA	
Emilie – Neshaminy 138 kV line loaded to 101.51% of	Base Case
550 MVA	
Edge Moor – Linwood 230 kV line loaded to 101.4% of	Loss of Claymont – Edge Moor 230 kV line
805 MVA	-
Lewistown – Reeds Gap Tap 115 kV line loaded to	Base Case
100.61% of 175 MVA	
Grays Ferry – Tunnel 230 kV line loaded to 100.09% of	Loss of Concorde – Lenape 230 kV, Concorde 230/35
983 MVA	kV and Lenape 230/35 kV lines

PowerSouth Energy Cooperative

Nothing to report.

Progress Energy Carolinas

Nothing to report.

Progress Energy Florida

Nothing to report.

Santee Cooper

Nothing to report.

South Carolina Electric & Gas

Nothing to report.

Southern Company Nothing to report.

Southwest Power Pool

Nothing to report.

Tennessee Valley Authority Nothing to report.

3.3.2 Summary of Voltage Results

Alcoa Power Generating Nothing to report.

Duke Energy Carolinas Nothing to report.

Electric Energy Inc. No information was provided by this Planning Authority.

Entergy Services Nothing to report.

Florida Power & Light Nothing to report.

Georgia Transmission Company Nothing to report.

Independent Electricity System Operator Nothing to report.

ISO New England Nothing to report.

JEA Nothing to report.

LG&E and KU Energy Nothing to report.

MAPPCOR Nothing to report.

MEAG Power Nothing to report.

Midwest ISO

Nothing to report.

New Brunswick System Operator

No information was provided by this Planning Authority.

New York ISO

Nothing to report.

PJM Interconnection

Facility Issue	Contingency
138 kV bus at Fayette low voltage of 91.11% of nominal	Loss of Allen Junction 345/138 kV, Allen Junction 'J'
	Bus – Allen Junction 138 kV and Allen Junction 'K'
	Bus – Allen Junction 138 kV lines
138 kV bus at Fayette low voltage of 91.95% of nominal	Loss of Allen Junction – Lulu Site 345 kV, Lulu Site –
	Milan 345 kV and Lulu Site – Monroe Power Plant
	(Units 3 and 4) 345 kV lines
138 kV bus at Fayette low voltage of 91.96% of nominal	Loss of Allen Junction – Lulu Site 345 kV
138 kV bus at Wattsville low voltage of 94.14% of	Loss of Piney Grove 230 kV bus
nominal	
138 kV bus at Oak Hill low voltage of 94.0% of nominal	Loss of Piney Grove 230 kV bus
138 kV bus at New Church low voltage of 94.05% of	Loss of Piney Grove 230 kV bus
nominal	
138 kV bus at Pocomoke low voltage of 94.07% of	Loss of Piney Grove 230 kV bus
nominal	

PowerSouth Energy Cooperative

Nothing to report.

Progress Energy Carolinas

Nothing to report.

Progress Energy Florida

Nothing to report.

Santee Cooper

Nothing to report.

South Carolina Electric & Gas Nothing to report.

Southern Company

Nothing to report.

Southwest Power Pool Nothing to report.

Tennessee Valley Authority Nothing to report.

Section 4 Enhancements

4.1 Introduction

After Planning Authorities performed analysis on the 2020 roll-up to determine potential "gaps", conceptual upgrades were identified such that the respective regional planning processes could be informed for future planning cycles. This section lists the issues identified by each PA in Section 3, together with high-level conceptual upgrades and the entities with which the PA will be coordinating on solutions in future planning cycles.

4.2 Issues List, Conceptual Upgrades, and Coordinating Entities

PA	Facility Issue	Contingency	Conceptual	Coordinating
			Upgrades	Entities
MISO	Lyons to Allen Junction 138 kV	Base Case Overload	Upgrade	n/a
	ckt 1 to 101.1%		facility	
			capacity	
MISO	Benton Harbor 345/138 kV to	345kV Twin Branch	Upgrade	PJM
	Transformer (AEP) ckt 2 to	to Argenta Line	facility	
	102.6%	Outage	capacity	
MISO	Livingston to Livingston Peaker	345kV Gallagher	Upgrade	n/a
	138 kV ckt 1 to 101.6%	Junction to	facility	
		Livingston Line	capacity	
		Outage		
MISO	Adams to Spokane 120 kV ckt 1	230kV Jewel to	Upgrade	n/a
	to 104.5%	Spokane Line	facility	
		Outage	capacity	
MISO	Kincaid (CE) to Pawnee West 345	345kV Pana North	Upgrade	PJM
	kV ckt 1 to 109.9%	to Pawnee Line	facility	
		Outage	capacity	
MISO	Troy (AECI) to Dardenne 161 kV	345kV Montgomery	Upgrade	SPP
	ckt 1 to 100.9%	to O' Fallon Double	facility	
		Cirucuit Tower	capacity	
		Outage		
MISO	Huster to McClay 138 kV ckt 1 to	138kV Fairfield Bus	Upgrade	n/a
	102.4%	Outage	facility	
			capacity	
MISO	Joachim to Bailey Tap 138 kV ckt	345kV Gray Summit	Upgrade	n/a
	1 to 129.5%	to Labadie Line	facility	
		Outage	capacity	
MISO	Turkey Hill 345/138 kV to	345-138kV Baldwin	Upgrade	n/a
	Transformer ckt 1 to 113.5%	Breaker and	facility	
		Transformer Outage	capacity	

PJM Interconnection

PJM assessment of the issues listed in the gap analysis attributes their cause primarily to increased load levels compared to the most recent RTEP analysis utilizing these same testing procedures. Since all of these issues will be addressed to the extent they materialize in the course of RTEP analysis, they are not expected to impact interregional reliability and do not represent "gaps" in the interregional plans.

For the thermal analysis, a generator deliverability study was conducted on the EIPC roll up case to determine the ability of an electrical area to export capacity resources to the remainder of the PJM system. It ensures that capacity resources will be able to deliver to the PJM system to meet peak load demand under single and certain multiple contingency conditions. An N-1 study was conducted for voltage analysis of the system. The PJM system in the EIPC roll up case is a representation of the RTEP baseline system that is stressed by load and generation additions necessary to reflect the 2020 reference year with a 2015 topology. This causes the PJM system to become sensitive to export from and import into PJM under the RTEP analysis conditions because of a stressed baseline network.

The generator deliverability analysis typically concludes local drivers for issues identified, and in this particular scenario the thermal issues are a result of load growth on a stressed system and not because of interregional drivers. The voltage issues are also driven by load growth and a stressed system. Such thermal and voltage issues would be identified in the RTEP cycle of analysis by the Transmission Planning Department and will be addressed during the appropriate RTEP cycle.

4.3 Map of Future Transmission Projects (Projects Near PA Boundaries)

One of the tools utilized to facilitate inter-area coordination was a map of all proposed major transmission projects in the Eastern Interconnection (generally facilities greater than 230 kV) that were near the boundaries of each PA. This map was built on a base map of existing transmission above 200 kV; the Ventyx Velocity Suite was then used, with input from each PA, to add projects to the map. This enabled each PA to examine projects proposed by its neighbors, and quickly determine which projects might affect their own system. This map of proposed transmission can be found in Appendix A.

In addition to assisting with the assessment of plans from neighboring Planning Authorities, this map of future transmission projects also served as a tool for potential project optimization. Although no project optimization was currently identified, Planning Authorities may utilize this tool in future cycles to further monitor current transmission plans and potentially explore joint projects that may mutually benefit multiple regions/areas.

Section 5 Linear Transfer Analysis

5.1 Introduction

There is growing interest in how much power can be reliably moved between regions. Because of the many interconnected paths and the need to remain reliable under contingencies, the capability of the power system to transfer power from one area to another is not a fixed value such as the capacity of a pipe, but rather a range of values based upon the usage of parallel paths. One tool available that can assist in assessing transfer capability between areas is linear transfer power flow analysis. As utilized by the EIPC Planning Authorities, the intent of this analysis is not to identify constraints such that projects could be identified and transfer capability increased, but rather to illustrate transfer capabilities of the transmission grid as currently planned (based on the 2020 roll-up) under a number of transfer patterns. The linear analysis performed only involves thermal analysis, which is used to evaluate the capability of the transmission facilities to withstand the thermal impact created by the increased electrical current flowing through the facilities. The thermal analysis did not examine system voltage, reactive supply, or stability issues. If conditions other than thermal limits dictate the Total Transfer Capability ("TTC"), these conditions are noted as such in Section 5.4 "Linear Transfer Analysis Results".

5.2 Linear Transfer Analysis Inputs

Linear transfer power flow analysis input files (monitored elements, subsystems, contingency files) were supplied by each PA. Transfer subsystems were defined for exports and imports (see Section IV.B.3 of the "Steady State Modeling Load-Flow Working Group Procedure Manual") at a transfer test level of 5,000 MW for each transfer, with transfer amounts allocated amongst the importing areas on a load ratio share. The analysis was performed on a non-simultaneous basis meaning that each transfer was assessed one at a time. However, because the transfers grouped multiple areas together as the source and as the sink, the analysis reflects simultaneous flows for the particular areas included in the transfer (see Table 1 and Table 2).

All facilities greater than 100 kV in the base case model were monitored. Generally, single contingency events for all facilities 161 kV and above in the base case model, including generators as appropriate, were assessed. Known, approved, and applicable operating procedures were included in the contingency files.

5.3 Linear Transfer Analysis Process

The linear analysis was performed using PTI's PSS/MUST software. As previously mentioned, this is thermal only analysis and does not examine system voltage, reactive supply, or stability issues.

Only those facilities with appreciable flows related to the transfer (Transfer Distribution Factor ("TDF") of 3.0% or greater) were reported as limits. The TDF value indicates the percentage of the transfer being studied that actually is flowing on the identified transmission facility under the specific contingency condition. The 3.0% TDF cutoff for reporting is the value traditionally used in transmission planning analysis to indicate that the transfer has a significant impact on the facility. A TDF less than 3% indicates that a facility, if reported, is already heavily loaded without the transfer in place.

If no constraint was identified up to the transfer test level of 5000 MW, "no limit" was reported and further transfer capability was not evaluated. When the incremental transfer capabilities (expressed in MW) were equal to or exceeded 1,000 MW, they were rounded down to the nearest 100 MW. When they were less than 1,000 MW, they were rounded down to the nearest 50 MW.

5.4 Linear Transfer Analysis Results

As previously mentioned, the specific linear power transfers performed and the details associated are identified in Section IV.B.3 of the "Steady State Modeling Load-Flow Working Group Procedure Manual". An overview of the transfers performed is also listed below. Table 1 describes the PA's that were grouped together for transfers as an area while Table 2 describes the combinations of areas [exporting (source) or importing (sink)] for which transfers were performed. For example, Group A includes FPL, JEA, and Progress Energy Florida in associated transfers performed. Note that participation in an area is only based upon PAs that are parties to the EIPC.

Α	В	С	D	E	F
FPL	MAPPCOR	New York ISO	PJM	Duke Energy Carolinas	SPP
JEA	MISO	ISO New England		Entergy	
PEF	ATC	Ontario IESO		LG&E/KU	
	ITC	NBSO		GTC	
				Power South	
				PEC	
				SCEG	
				SC	
				Southern Company	
				MEAG	
				Alcoa Power Generating	
				TVA	
				Electric Energy, Inc.	

Table 1:	: Groupings of Planning Areas for Trans	fers
----------	---	------

Table 2: Transfers Performed

	Sink											
Source	Α	В	С	D	E	F						
Α					Y							
В			Y	Y	Y	Y						
С		Y		Y								
D		Y	Y		Y							
E	Y	Y		Y		Y						
F		Y			Y							

Table 3 summarizes the results of the results of the linear transfer analysis. For each transfer, only the information for the lowest FCITC (First Contingency Incremental Transfer Capability) is listed, along with branch information for the limiting element and associated contingency. The FCITC provides the amount of transfer capability incremental to the base case interchange between the given subsystems. More detailed results for each subsystem's linear transfer analysis can be found in Appendix D.

Source	Sink	FCITC (MW)	Limiting Element	Lim. PA	Contingency / Outaged Facility	Con. PA		
۸		050	403551 Central Florida 500kV	555	403559 Levy Plant 500kV	555		
A E 650		650	403562 Citrus 500kV	PEF	403551Cent. FL South 500kV	PEF		
P	C	0000	160064 LAMBTON_T7T8 220kV	1500	264656 19STCPP 345kV	ITO		
Б	C	2800	160069 LAMBTON_P2K2 220kV	IESO	264830 19STCPP 220kV	пс		
B		1100	160064 LAMBTON_T278 220kV	1500	160065 LAMBTON_L51D 220kV	1500		
D	D	4400	160069 LAMBTON_P2K2 220kV	IESO	160059 LAMBTON_P1K1 220kV	150		
в	F	5000	242620 Danville 138kV		242514 Jacksons Ferry 500kV			
D		5000	242631 East Danville 138kV	AEP	242520 Jacksons Ferry 500kV	AEP		
в	F	No limit	N/A	N1/A	N1/A	NI/A		
D	•	NO IIMI	N/A	N/A	IN/A	IN/A		
C	в	700	270864 QUAD3-11 345kV	PJM /	636400 HILLS 3 345kV	MISO		
0	С В 700 631		631141 ROCK CK3 345kV	MISO	636420 TIFFIN 3 345kV	101130		
С	130807 Westover 115kV		NYISO	130763 Hillside 230kV	NYISO			
0		2100	200680 Laurel Lake 115kV	/ PJM	200675 East Towanda 230 kV	/ PJM		
D	в	650	270864 QUAD 3-11 345kV	PJM /	636400 HILLS 3 345kV	MISO		
			631141 ROCK CK3 345kV	MISO	636420 TIFFIN 3 345kV			
D	С	2900	200678 LENOX 115kV	PIM	C:Relay:ETHS E. Towanda-	NY /		
D	Ŭ	2300	200679 TIFFANY 115kV	1 5101	Hillside x-trip 956	PJM		
D	F	600	200004 Conastone 500kV	DIM	200004 Conastone 500kV	D IM		
D		000	200013 Peach Bottom 500kV	FJIVI	200026 Hunterstown 500kV	FJIVI		
E	А	1200			Loss of Turkey Pt. #6 generator			
E	D	000	270864 QUAD3-11 345kV	PJM /	636400 HILLS 3 345kV			
	Б	900	631141 ROCK CK3 345kV	MISO	636420 TIFFIN 3 345kV	MISO		
F		0000	314906 Clover 500 kV		304998 DBGen 500 kV			
	U	2200	314686 Clover 230 kV	РЈМ	314902 Carson 500 kV	РЈМ		
F	F	1000	505508 DARDANE5 161kV	000	337909 8ANO 50 500kV	EES/		
	1	1900	505514 CLARKSV5 161kV	5PP	515305 FTSMITH8 500kV	SPP		
F	B	2200	360065 3WID CRK FP 500kV	T \ (A	360050 8MAURY TN 500kV	T) (A		
		3200	360081 8SEQUOYAH NP 500kV	IVA	360052 8BR FERRY NP 500kV	IVA		
F	F	2800	338875 Patmos West SS 115kV	EES /	337376 Sarepta 345kV	EES/		
		3800	503912 Fulton 115kV	AEPW	508809 Longwood 345kV	AEPW		

Table 3: Linear Transfer Analysis Results Summary

Further details and explanation for several reported limits are provided below:

Transfer B to C

The normal criteria thermal transfer analysis was performed with all lines in - service which identified certain 115 kV lines as limitations for the B-C transfer. The 115kV interconnections between PJM and New York (Warren - Falconer, North Waverly - East Sayre) may be opened in accordance with NYISO and PJM Operating Procedures provided this does not cause unacceptable impact on local reliability in either system. Over - current protection is installed on the Warren - Falconer and the North Waverly - East Sayre 115kV circuits; either of these circuits would trip by relay action for an actual overload condition. Therefore, at an incremental transfer of 2817 MW, the limiting element is the Lambton PAR in Ontario for loss of a 345/220 kV transformer in Michigan.

Transfer C to D

The normal criteria thermal transfer analysis was performed with all lines in - service which identified certain 115 kV lines as limitations for the D-C transfer. The 115kV interconnections between PJM and New York (Warren - Falconer, North Waverly - East Sayre) may be opened in accordance with NYISO and PJM Operating Procedures provided this does not cause unacceptable impact on local reliability in either system. Over - current protection is installed on the Warren - Falconer and the North Waverly - East Sayre 115kV circuits; either of these circuits would trip by relay action for an actual overload condition. The next limiting element is the Sithe JV42H – Sithe VT3RS 220 kV line in IESO, which is not a valid limit. This element shows up as a limiting element due to a split bus configuration in the base case and IESO has updated operational procedures to operate this bus solid. Therefore, at an incremental transfer of 2100 MW, the limiting element is the Westover – Laurel Lake 115 kV line between New York and PJM.

Transfer D to C

The normal criteria thermal transfer analysis was performed with all lines in - service which identified certain 115 kV lines as limitations for the D-C transfer. The 115kV interconnections between PJM and New York (Warren - Falconer, North Waverly - East Sayre) may be opened in accordance with NYISO and PJM Operating Procedures provided this does not cause unacceptable impact on local reliability in either system. Over - current protection is installed on the Warren - Falconer and the North Waverly - East Sayre 115kV circuits; either of these circuits would trip by relay action for an actual overload condition. Therefore, at an incremental transfer of 2902 MW, the limiting element is the Lenox - Tiffany 115 kV line in PJM for operation of an over-current relay which trips the East Towanda - Hillside 230 kV and East Sayre – North Waverly 115 kV tie-lines between New York and PJM.

Transfer E to D

The Woodleaf – Pleasant Garden 500 kV line was identified as a limiting element for the E to D transfer. Duke has a simple ancillary equipment upgrade to raise the rating of this line to 2219 MVA and the incremental transfer value to greater than 8,000 MW. Duke will perform this upgrade at the appropriate time in the future, but would not allow the line to be a limiting element in the transfer capability between the systems. Therefore, at an incremental transfer of 2200 MW, the limiting element is the Clover 500/230 kV transformer in PJM with the loss of th DB Gen – Carson 500 kV line, which represents the outage of the Wake – Carson 500 kV line.

Appendix A: Future Project Map

Conawapa Hydro Project

Bemidii

Lake Marion

Briclyn

Hampton Corners

OMitchel Co

Hazleton

Ottumwa Generating S

Thomas Hill (Secon

CI Norborne

Osage Creek Grandview

Fint Creek (AR)

○AECI Mt Hulda

Bull Shoals

Arkansas Nuclear One

Russelville South Hamlet

Holland Bottoms (Cabot EHV)

Norfork

Fast Quin

Palmyra

Spring Green

Northern Converter Station

Crow River DS

Kewaunee

North Randolph

North Madison

• Brokaw

Montgomer

Cardinal

Maple Ridge

Unknow

Rush Island

Church Road

South Bloomington

Eorest Junction North SS

- East SS

Bruce A

Cosmo Tap

awrence Countvolla

North Clark County

Volunteer

Enka

Nantahala

JK Smith

West Garrard

Huntsville

Fontana (NC)

Kensington Ngeric Center Point Norm

Elza [°]E Knox

John E Amos

Appendix B: New/Upgraded Transmission Projects

New or Upgraded Transmission Facilities in EIPC 2020 Roll-Up Case

10		•
Includes ALL new/upgraded f	acilities (161 kV and above) that are proj	ected to be in-service by 2020

PA	State(s)	From Bus #	From Bus Name	To Bus #	To Bus Name	Ckt	Voltage (kV)	Line Length (miles)	Expected In- Service Year	Planning Status	Project Type	Project Description
Duke Carolinas	NC	306151	6PISGAH 230.0	306159	6SHILOH 230.0	1	230	22	2013	State/Budget Approval	Reliability	Conductor upgrade - under construction
Duke Carolinas	NC	306151	6PISGAH 230.0	306159	6SHILOH 230.0	2	230	22	2013	State/Budget Approval	Reliability	Conductor upgrade - under construction
Duke Carolinas	NC	306152	6PL GRDN 230.0	304332	6ASHEB 230.0	1	230	20	2011	State/Budget Approval	Reliability	New tie line to CPLE - under construction
Duke Carolinas	NC	306461	CLFSDTAP 500.0				500	N/A	2011	State/Budget Approval	Reliability	New station for Cliffside 6 generator - under construction
Entergy	TX	334442	Gulfway 230kV	334434	Sabine 230kV	1	230	5.5	2010	State/Budget Approval	Reliability	Construct new 230 kV line
Entergy	LA	335536	Addis 230kV	303000	Cajun 230kV	1	230	0.1	2010	State/Budget Approval	Reliability	Upgrade 230 kV line
Entergy	AR	337905	East Russelville 161kV	337904	South Russelville 161kV	1	161	4.1	2010	State/Budget Approval	Reliability	Upgrade 161 kV line
Entergy	AR	337912	Arkansas Nuclear One 161kV	337906	North Russelville 161kV	1	161	8.79	2010	State/Budget Approval	Reliability	Upgrade 161 kV line
Entergy	AR	338033	Parkin 161kV	338041	Twist 161kV	1	161	8.05	2010	Planned	Reliability	Upgrade 161 kV line
Entergy	AR	338131	Melbourne 161kV	338132	Sage 161kV	1	161	4.77	2010	State/Budget Approval	Reliability	Upgrade 161 kV line
				004070					0044			Convert line to 230 kV operation and add auto at Lewis
Entergy	IX	334069	Lewis Creek 230kV	334072	Lewis Creek 138kV	1	230/138	N/A	2011	State/Budget Approval	Reliability	Creek
E .				004005				40.00	0044			Convert line to 230 kV operation and add auto at Lewis
Entergy	IX	334069	Lewis Creek 230kV	334085	Peach Creek 230kV	1 1	230	12.39	2011	State/Budget Approval	Reliability	Creek
Estan	TV	224005	Devel Oreal 000114	224204	1	1	000	1/ 40	2011	Challe (De al and America)	Dell's bills	Convert line to 230 kV operation and add auto at Lewis
Entergy	IX	334085	Peach Creek 230kV	334206	Jacinto 230kV	1	230	16.49	2011	State/Budget Approval	Reliability	Creek
Entergy	TX	334362	Inland Orange 230kV	334361	McLewis 230kV	1	230	6.55	2011	Planned	Reliability	Upgrade 230 kV line
Entergy	TX	334363	Hartburg 230kV	334362	Inland Orange 230kV	1	230	3.98	2011	Planned	Reliability	Upgrade 230 kV line
Enterny	1.4	225201	Manue 220 IN/	225.200	Meaning 100 kV/	1	220/120	N1/A	2011	Ctote/Durdnet Americal	Deliability	Acadiana Load Pocket Project Construct new 230 kV
Entergy	LA	335381	Weaux 230 KV	335380	Ivieaux 138 KV	1 1	230/138	IN/A	2011	State/Budget Approval	Reliability	line and add auto at Meaux
Entergy	LA	336010	Bayou Laboutte 500 kV	336011	Bayou Laboutte 230 kV	1	500/230	N/A	2011	Planned	Reliability	Construct new 500-230 kV substation and 230 kV line
Entergy	LA	336011	Bayou Laboutte 230kV	336000	Iberville 230kV	1	230	1.5	2011	Planned	Reliability	Construct new 500-230 kV substation and 230 kV line
Enterny	MC	227000	MaAdama 220I//	227015	Diskana 220kV	1	220	1/ 2	2011	Chate/Durdant Americal	Deliability	Add 2nd E00 220 IV/ suits and sensitivel new 220 IV/ line
Entergy	IVIS	337000	WCAdams 230KV	33/015	PICKETIS Z3UKV	1 1	230	10.3	2011	State/Budget Approval	Reliability	Add 2nd 500-230 kV auto and construct new 230 kV line
Entormy	MC	227000	Maddama E00 kV	227000	Maddame 220 kV	2	E00/220	NI/A	2011	State/Budget Approval	Doliobility	Add 2nd E00 220 IV/ suits and sensitivel new 220 IV/ line
Entergy	IVIS	337009	WCAdams SUU KV	337000	IVICAUAITIS 230 KV	2	500/230	IN/A	2011	State/Budget Approval	Reliability	Add 2nd 500-230 kV auto and construct new 230 kV line
Entergy	AR	338682	Osage Creek 161kV	338099	Grandview 161kV	1	161	5	2011	Planned	Reliability	Construct new 161 kV line
Entergy	LA	500776	Sellers Rd 230kV	335381	Meaux 230kV	1	230	9.3	2011	State/Budget Approval	Reliability	Construct new 230 kV line
Entergy	LA	335190	Nelson 230kV	303101	Moss Bluff 230kV	1	230	7	2012	Planned	Reliability	Construct new 230 kV line
Entergy	LA	335771	Loblolly 230kV	336140	Hammond 230kV	1	230	26.3	2012	State/Budget Approval	Reliability	Construct new 230 kV line
Entergy	LA	336069	Bayou Steel 230kV	336192	Tezcuco 230kV	1	230	10	2012	Planned	Reliability	Construct new 230 kV line
Entergy	LA	336086	Alliance 230 kV	336085	Alliance 115kV	1	230/115	N/A	2012	Planned	Reliability	Construct new 230 kV line and add auto at Alliance
Enteray	LA	336088	Oakville 230kV	336086	Alliance 230kV	1	230	10.3	2012	Planned	Reliability	Construct new 230 kV line and add auto at Alliance
Entergy	LA	336261	Peters Road 230kV	336088	Oakville 230kV	1	230	6.6	2012	Planned	Reliability	Construct new 230 kV line
Entergy	MS	336830	Baxter Wilson 500 kV	336800	Baxter Wilson 115 kV	2	500/115	N/A	2012	State/Budget Approval	Reliability	
Enorgy	inio	000000		000000			000/110		2012	olatorbudgotripprotar	rendbing	Construct new 230 kV line and add auto at South
Entergy	MS	337059	South Grenada 230 kV	337063	South Grenada 115 kV	1	230/115	N/A	2012	Planned	Reliability	Grenada
												Construct new 230 kV line and add auto at South
Entergy	MS	337120	Tillatoba 230kV	337059	South Grenada 230kV	1	230	19	2012	Planned	Reliability	Grenada
Enteray	AR	337904	South Russelville 161kV	505508	Dardanelle 161kV	1	161	11.09	2012	Planned	Reliability	Ungrade 161 kV line
Enteray	AR	338015	Holland Bottoms 161kV	337940	Hamlet 161kV	1	161	20	2012	Planned	Reliability	Construct new 161 kV line
Enteray	AR	338140	Holland Bottoms 500 kV	338015	Holland Bottoms 161 kV	1	500/161	N/A	2012	Planned	Reliability	Construct new 500-161-115 kV substation
												Install 5 breaker ring bus at Ebony South and
Entergy	AR	338163	Ebony South 161kV	N/A	N/A	N/A	161	N/A	2012	Planned	Reliability	reconfigure substation to include two new lines
Enteray	AR	338186	Monette 161kV	338204	Paragould 161kV	1	161	16.73	2012	Planned	Reliability	Upgrade 161 kV line
												Acadiana Load Pocket Project Construct new 230 kV
Entergy	LA	502421	Labbe 230kV	500776	Sellers Rd 230kV	1	230	15.7	2012	Planned	Reliability	line
Enteray	I A	335568	Willow Glen 230kV	335580	Conway 230kV	1	230	15	2013	Planned	Reliability	Construct new 230 kV line
Enteray	MS	337149	Church Road 230kV	337140	Getwell 230kV	1	230	16	2013	Planned	Reliability	Construct new 230 kV line
Entergy	LA	337420	Sterlington 500kV	337414	Sterlington 115kV	3	500/115	N/A	2013	State/Budget Approval	Reliability	Replace 500-115kV auto
		004005					500/000		0011	51 1		_
Entergy	IX	334325	Hartburg 500 kV	334363	Hartburg 230 kV	2	500/230	N/A	2014	Planned	Reliability	Construct new 230 kV line and add 2nd auto at Hartburg
Entergy	IX	334363	Hartburg 230kV	334429	Chisolm Rd 230kV	1	230	15	2014	Planned	Reliability	Construct new 230 kV line and add 2nd auto at Hartburg
Enteray	LA	303101	Moss Bluff 230kV	335209	Lake Charles Bulk 230kV	1	230	15.28	2015	Planned	Reliability	Construct new 230 kV line and 230 kV switching station
Enteray	TX	334204	China 230kV	334327	Amelia 230kV	2	230	11	2015	Planned	Reliability	Construct 2nd China to Amelia 230 kV line
Enteray	TX	334326	Cypress 230kV	334324	Jacinto 230kV	1	230	53	2015	Planned	Reliability	Construct new 230 kV line
Linoigy		001020		001021		· ·	200		2010	- I lainida	rtondbirty	Construct new 230 kV line and add auto at Senatobia
Entergy	MS	337132	Senatobia Industrial 230kV	337133	Senatobia Industrial 115kV	1	230/115	N/A	2015	Planned	Reliability	Industrial
						1			1			Construct new 230 kV line and add auto at Senatobia
Entergy	MS	337140	Getwell 230kV	337132	Senatobia Industrial 230kV	1	230	26	2015	Planned	Reliability	Industrial
Enterav	LA	337377	Sterlington 230kV	337382	Drew 230kV	1	230	16.7	2015	Planned	Reliability	Monroe Area: Convert to 230kV
Enterov	I A	337381	Rilla 230kV	337386	Rilla 115kV	1	230/115	N/A	2015	Planned	Reliability	Add 230-115 kV auto
Enterny	I A	337381	Rilla 230kV	337387	Selman Field 230kV	1	230/113	10.25	2015	Planned	Reliability	Monroe Area: Convert to 230kV
Enterov	IA	337382	Drew 230kV	337383	Cheniere 230kV	1	230	2 98	2015	Planned	Reliability	Monroe Area: Convert to 230kV
Enterny	I A	337383	Cheniere 230kV	337384	Riser 230kV	1	230	6.62	2015	Planned	Reliability	Monroe Area: Convert to 230kV
Entergy	LA	337384	Riser 230kV	337412	Frost Craft 230kV	1	230	1.93	2015	Planned	Reliability	Monroe Area: Convert to 230kV
Enteray	LA	337387	Selman Field 230kV	337377	Sterlington 230kV	1	230	15.4	2015	Planned	Reliability	Monroe Area: Convert to 230kV
Enterov	I A	337412	Frost Craft 230kV	337385	Frost Craft 115kV	1	230/115	N/A	2015	Planned	Reliability	Add 230-115 kV auto
Entergy		337420	Sterlington 500kV	337377	Sterlington 230kV	1	500/230	N/A	2015	Planned	Reliability	Add 500-230 kV auto
Enterov	AR	338130	Calico Rock 161kV	338131	Melbourne 161kV	1	161	16.63	2015	Planned	Reliability	Upgrade 161 kV line
Enterny	AR	338156	Viney Slough 500 kV	338157	Viney Slough 161 kV	1	500/161	N/A	2015	Planned	Reliability	Construct new 500-161 kV substation
Enterov	AR	338157	Viney Slough 161 kV	338170	Jonesboro 161kV	1	161	11 50	2015	Planned	Reliability	Ungrade 161kV line
Enterov	ΔR	338157	Viney Slough 161 kV	338707	Trumann West 1614V	1	161	5.02	2015	Planned	Reliability	Construct new 161 kV line
Enterny	ΔR	338157	Viney Slough 161 kV	505420	Hergett 161kV	2	161	3.03	2015	Planned	Reliability	Construct new 161 kV line
Enterny	ΔR	338170	Ioneshoro 161kV	505418	Ioneshoro SPA 161kV	1	161	0.84	2015	Planned	Reliability	Ungrade 161 kV line
Enterny	AR	338707	Trumann West 161kV	338169	Trumann 161kV	1	161	6.48	2015	Planned	Reliability	Upgrade 161 kV line
Enterny	ΔR	505460	Bullshoals 161kV	338812	Midway 161kV	1	161	23.88	2015	Planned	Reliability	Ungrade 161 kV line
Enterny	TX	334320	Cypress 500 kV	334326	Cypress 230 kV	3	500/230	N/A	2013	Planned	Reliability	Add 2nd auto
Enterov	ТХ	334326	Cypress 230kV	334328	Bevil 230kV	1	230	12 95	2017	Planned	Reliability	Upgrade 230 kV line
Enterny	TX	334327	Amelia 230kV	334360	Helbia 230kV	1	230	10.3	2017	Planned	Reliability	Upgrade 230 kV line
Enterov	ТХ	334328	Bevil 230kV	334327	Amelia 230kV	1	231	5.68	2017	Planned	Reliability	Upgrade 230 kV line
Enteray	AR	337905	East Russelville 161kV	337906	North Russelville 161kV	1	161	3,19	2017	Planned	Reliability	Upgrade 161 kV line
Enterov	MS	337132	Senatobia Industrial 230kV	337123	Batesville 230kV	1	230	22	2018	Planned	Reliability	Construct new 230 kV line
Enterny	AR	337993	Gobell 230kV	337992	Gobell 115kV	1	230/115	N/A	2018	Planned	Reliability	Construct new 230-115 kV substation
Enterny	AR	338125	Mt Home 161kV	338814	Southland 161kV	1	161	1.38	2018	Planned	Reliability	Upgrade 161 kV line
Entergy	AR	338226	Jim Hill 161kV	338202	Datto 161kV	1	161	40	2018	Planned	Reliability	Construct new 161 kV line

New or Upgraded Transmission Facilities in EIPC 2020 Roll-Up Case Includes ALL new/upgraded facilities (161 kV and above) that are projected to be in-service by 2020

			11010000712					loj that				•
	0	From Bus	From Due Name	T- D #	To Due Norre	01.4	Voltage	Line	Expected In-	Discusion Otation	Desired Tons	Basiant Description
PA	State(S)	#	From Bus Name	TO BUS #	TO BUS Name	CKt	(kV)	Length (miloc)	Service Year	Planning Status	Project Type	Project Description
5.1		000040		000405				(iiiies)	0010	D 1 1		
Entergy	AR	338813	Midway 161kV	338125	Mt Home 161kV	1	161	4.41	2018	Planned	Reliability	Upgrade 161 kV line
Entergy	AR	505448	Norfork 161kV	338130	Calico Rock 161kV	1	161	8.12	2018	Planned	Reliability	Upgrade 161 kV line
Entergy	LA	336190	Gypsy 230kV	336155	Hooker 230kV	1	230	4.35	2020	Planned	Reliability	Reconfigure area 230 kV
Entergy	LA	336225	Waggaman 230kV	336154	Waterford 230kV	1	230	9.4	2020	Planned	Reliability	Convert line to 230 kV operation
Entergy	LA	336225	Waggaman 230kV	336250	Ninemile 230kV	1	230	8.5	2020	Planned	Reliability	Convert line to 230 kV operation
Enteray	LA	336435	A B Patterson 230 kV	336412	A B Patterson 115 kV	1	230/115	N/A	2020	Planned	Reliability	Add 230-115 kV auto
Entergy		337376	Saronta 3/5 kV	337363	Saronta 115 kV	1	3/5/115	N/A	2011	State/Budget Approval	Poliability	Construct now 245 115 kV substation
Entergy		220140	Lolland Battoms E00 kV	220014	Hollond Bottoms 115 kV	1	E00/11E	N/A	2011	Dianod	Doliability	Construct new 545-115 KV substation
Entergy	AR	330140	Holialiu Bollonis 500 KV	330010	HUIIdHU BUILUHIS TTS KV	1	500/115	IN/A	2011	Pidilieu	Reliability	Construct new 500-161-115 KV Substation
FPL	FL	400308	Fruitville	400352	Ringling	1	230	4.31	2011	State/Budget Approval	Reliability	Line upgrade
FPL	FL	400123	Emerson	400266	Midway	1	230	15	2010	State/Budget Approval	Reliability	Line upgrade
FPL	FL	400466	Orangedale	400841	Millcreek	1	230	0.33	2013	State/Budget Approval	Reliability	Line upgrade
FPL	FL	400571	Deltona	400469	Sanford	1	230	14.5	2010	State/Budget Approval	Reliability	Line upgrade
FPI	FL	401794	Bobwhite	400352	Rinalina	2	230	0.1	2012	State/Budget Approval	Reliability	New line
FPI	FL	400351	OrangeRiv	400919	Orangetree	2	230	0.1	2013	State/Budget Approval	Reliability	New line
FDI	ГL ГL	401704	Bebubite	400252	Dingling	1	230	0.1	2013	State/Budget Approval	Doliability	Newline
FPL	FL FL	401794	Bubwhite	400302	Ringing	1	230	0.1	2012	State/Budget Approval	Reliability	New line
FPL	FL	401794	Bodwhite	400348	Laureiwood		230	0.1	2012	State/Budget Approval	Reliability	New line
FPL	FL	401794	Bobwhite	400349	Manatee	1	230	13	2012	State/Budget Approval	Reliability	New line
FPL	FL	401725	Gaco	401054	Pirolo	1	230	12.5	2010	State/Budget Approval	Reliability	New line
FPL	FL	400470	St Johns	401062	Pellicer	1	230	8	2013	Planned	Reliability	New line
FPL	FL	400712	O'Neil	410024	Kingsland	1	230	7.5	2012	State/Budget Approval	Reliability	New line
FPI	FI	400750	Alico	400344	Ft Myers	1	230	19.5	2011	State/Budget Approval	Reliability	New line
FDI	FL	400750	Alico	400344	Ft Myors	1	230	1	2011	State/Budget Approval	Poliability	New line
FDI	ГL ГL	400110	Turkov Dt	401014	Dringo 220	1	230	11	2011	State/Budget Approval	Doliability	Newline
FPL	FL FL	400119	Turkey Pt	401014	Plince250	1	230	15.50	2011	State/Budget Approval	Reliability	
FPL	FL	400468	Putnam	400462	Rice		230	15.53	2013	Planned	Reliability	Line upgrade
FPL	FL	400468	Putnam	400398	Hudson	1	230	9.849	2015	Planned	Reliability	Line upgrade
FPL	FL	400817	FPL120G1	406496	Sampson	1	230		2012	Planned	Reliability	Line upgrade
FPL	FL	400266	Midway	400272	St Lucie	1	230	11.6	2011	State/Budget Approval	Reliability	Line upgrade
FPL	FL	400266	Midway	400272	St Lucie	2	230	11.7	2011	State/Budget Approval	Reliability	Line upgrade
FPI	FI	400266	Midway	400272	St Lucie	3	230	11.8	2011	State/Budget Approval	Reliability	Line ungrade
EDI	EL	410110	Cloar Shu	410120	autotransformor	1	500/220	0	2011	Dropocod	Poliability	Nuclear Diant
I FL	I L	410117	Clear Sky	410120	autotransformer	1	500/230	0	2020	Flupused	Reliability	Nucleal Plain
FPL	FL	410119	Clear Sky	410120	autotransformer	2	500/230	0	2020	Proposed	Reliability	Nuclear Plant
FPL	FL	410120	Clear Sky	400120	Levee	1	500	43	2020	Proposed	Reliability	Nuclear Plant
FPL	FL	410120	Clear Sky	400120	Levee	2	500	43	2020	Proposed	Reliability	Nuclear Plant
FPL	FL	410119	Clear Sky	400109	Levee	1	230	43	2020	Proposed	Reliability	Nuclear Plant
FPL	FL	410119	Clear Sky	400105	Davis	1	230	21	2020	Proposed	Reliability	Nuclear Plant
FPI	FI	400356	Duval	410014	Series Comp		500	0	2020	Proposed	Reliability	Nuclear Plant
FPI	FL	400356	Duval	410014	Series Comp		500	0	2020	Proposed	Reliability	Nuclear Plant
FDI	ГL ГL	400530	Carbott	4010014	Cormontourn	1	220	20.1	2020	State/Budget Approval	Doliability	Newline
FPL	FL	400000	COIDEIL	401223	Germaniown	1	230	30.1	2011	State/Budget Approval	Reliability	
IESU	ON	152000	Hanmer	156014	Claireville		500	215	2015	Proposed	Reliability	Single circuit 500 kV from Claireville 1S to Hanmer 1S
IESO	ON	151054	Lakehead	152061	Wawa	1	220	247.3	2015	Proposed	Reliability	Double circuit 230 kV from Lakehead TS to Wawa TS
IESO	ON	151054	Lakehead	152061	Wawa	2	220	247.3	2015	Proposed	Reliability	
IESO	ON	152049	Mississagi	152000	Hanmer	1	500	130.5	2015	Proposed	Reliability	Single circuit 500 kV from Mississagi TS to Hanmer TS
1500		4/0050		410010				17.0	0047			
IESO	ON	160059	Lambton	160062	Longwood	1	220	47.2	2016	Proposed	Reliability	Double circuit 230 kV from Lambton TS to Longwood TS
	ON	140040	Lambtan	140040	Longwood	1	220	47.2	2014	Dronocod	Doliability	
IESO		100009	Lampion	100002	Third Line	1	220	47.2	2010	Proposed	Reliability	Dealer in 200 by free Week TC is This in the
IESU	ON	152074	wawa	152118	I nira Line		220	103.1	2015	Proposed	Reliability	Double circuit 230 kV from Wawa TS to Third Line TS
IESO	ON	152074	Wawa	152118	I hird Line	2	220	103.1	2015	Proposed	Reliability	
IESO	ON	156000	Powmanvillo	156001	Chorpwood	6	500	20.6	2016	Dropocod	Poliability	Double circuit 500 kV from Bowmanville TS to
1230		130000	Downanviic	130001	Cherrywood		500	20.0	2010	Tioposcu	Renability	Cherrywood TS
IESO	ON	156000	Bowmanville	156001	Cherrywood	6	500	28.6	2016	Proposed	Reliability	
								1				Double circuit 230 kV from Hawthorne TS to St
IESO	ON	155069	St. Lawrence	154050	Hawthorne	1	220	46.6	2016	Proposed	Reliability	Lawrence TS
	01	155040	St Louropeo	154050	Llouthorpo	2	220	16.6	2014	Dranacad	Doliability	Lawience 15
IESU	ON	100009	St. Lawience	154050	nawinome	2	220	40.0	2010	Proposed	Reliability	
IESU	ON	151391	INIPIGON	151393	Crow River		220	261	2013	Proposed	Reliability	Single circuit 230 kV from Nipigon TS to Crow River TS
IESO	ON	160055	Chatham	160062	Longwood	1	220	51.6	2016	Proposed	Reliability	Double circuit 230 kV from Chatham TS to Longwood TS
IESO	- ON	100033	Chatham	100002	Longhood		220	51.0	2010	Toposed	renubiirty	bouble circuit 230 kV from chatham 15 to Eongwood 15
IESO	ON	160055	Chatham	160062	Longwood	2	220	51.6	2016	Proposed	Reliability	
												Double circuit 230 kV from Mississagi TS to Third Line
IESO	ON	152118	I nird Line	152074	wississagi	1	220	47.2	2015	Proposed	Reliability	TS
IESO	ON	150110	Third Line	152074	Mississani	2	220	17 2	2015	Dropocod	Poliability	
1030		152110	Ingorsoll	152074	Ivii sələsdyi Vərn	1	220	47.2	2013	State/Rudget America	Deliekiik	Double eizeuit 220 kV/from Incorrent TC h. K
IESU	UN	1281/1	Ingerson	108108	Kam		220	9.3	2011	State/Budget Approval	Reliability	Double circuit 230 kV from ingersoil 15 to Karn 15
IES0	ON	158172	Ingersoll	158169	Karn	1	220	9.3	2011	State/Budget Approval	Reliability	
IESO	ON	160157	Sandwitch Junction	160060	Lauzon TS	1	220	75	2016	Proposed	Reliability	Double circuit 230 kV from Lauzon TS to Sandwitch
								1.5	2010	- Toposed		Junction
IESO	ON	160158	Sandwitch Junction	160061	Lauzon TS	1	220	7.5	2016	Proposed	Reliability	
IESO	ON	158000	Milton	159000	Bruce	1	500	115.6	2013	State/Budget Approval	Reliability	Double circuit 500 kV from Bruce TS to Milton TS
IESO	ON	158000	Milton	159001	Bruce	1	500	115.6	2013	State/Budget Annroval	Reliability	
IESO		157280	Allanhurg	158040	Middleport	1	220	A7 0	Unknown	State/Budget Approval	Reliability	The construction is on hold
100		157200	Allanburg	150007	Middloport	1	220	47.2	Unknown	State/Dudget Approval	Deliekiik	The construction is on hold
IESU		15/281	And IDUIY	1/0801	iviidalepon	<u> </u>	220	41.2		Jale/Dudget Approval	Reliability	
IESU	UN		Usnawa 15				500/220		2016	Proposed	Reliability	Reinforce supply to Ushawa, Witby and Ajax areas
IESO	ON	-	Karn TS	-			220/118	-	2011	State/Budget Approval	Reliability	Improve 115kV supply in Woodstock area
ISO-NE	ME	100089	South Gorham 345.00	100165	South Gorham 115.00	2	345/115	N/A	2010	State/Budget Approval	Reliability	New second transformer
ISO-NE	ME	100002	Orrington 345.00	100092	Albion Road 345.00	1	345	59	2012	State/Budget Approval	Reliability	2-1590 ACSR
ISO-NF	ME	100092	Albion Road 345.00	100005	Cooper Mills 345.00	1	345	21	2012	State/Budget Approval	Reliability	2-1590 ACSR
ISO-NE	ME	100005	Cooper Mills 345 00	100005	Larrabee Rd 345.00	1	345	3/	2012	State/Budget Approval	Reliability	2-1590 ACSR
ISO-NE	ME	100005	Larrahee Rd 345.00	100087	Surowiec 345.00	1	2/15	17	2012	State/Rudget Approval	Reliability	2.1590 ACSR
	IVIL:	100090	Albian Dood 245.00	100007	Albion Dood 115 00	1	J40 240/117	1/ N//A	2012	State/Dudget Approval	Dolichille	Now substation & transformer
ISU-NE	ME	100092	AIDION ROAD 345.00	100247	AIDION ROAD 115.00		345/115	IN/A	2012	State/Budget Approval	Reliability	Invew substation & transformer
ISO-NE	ME	100095	Larrabee Rd 345.00	100118	Guir Island 115.00	1	345/115	N/A	2012	State/Budget Approval	Reliability	New substation & transformer
ISO-NE	ME	100087	Surowiec 345.00	100007	Raven Farm 345.00	1	345	12	2012	State/Budget Approval	Reliability	2-1590 ACSR
ISO-NE	ME	100089	South Gorham 345.00	100098	Maguire Road 345.00	1	345	21	2012	State/Budget Approval	Reliability	2-1590 ACSR
ISO-NE	ME	100098	Maguire Road 345.00	103710	Three Rivers 345.00	1	345	27	2012	State/Budget Approval	Reliability	2-1590 ACSR (New 345kV substations)
ISO-NE	ME	100007	Raven Farm 345.00	100134	Raven Farm 115.00	1	345/115	N/A	2012	Planned	Reliability	New substation & transformer
ISO-NF	MF	100098	Maguire Road 345 00	100163	Maguire Road 115.00	1	345/115	N/A	2012	State/Budget Annroval	Reliability	New substation & transformer
ISO.NE	NH	104005	Deerfield 345 00	104504	Deerfield 115.00	2	345/115	N/A	2012	State/Budget Approval	Reliability	New second transformer
		107040	Voman 24E 00	104000	Vorpop 11E 00	1	245/112	N/A	2012	State/Dudget Approval	Dolichille	New substation & transformer
ISU-NE		107040	Vernon 245.00	107050	Veniun 115.00		345/115	IN/A	2011	State/Budget Approval	Reliability	
ISU-NE	VI	10/040	vernon 345.00	10/050	INEWTANE 345.00	1	345	17	2011	State/Budget Approval	Reliability	2-904 AUSK
ISO-NE	VT	107050	Newfane 345.00	107010	Coolidge 345.00	1	345	35	2011	State/Budget Approval	Reliability	2-954 ACSR

New or Upgraded Transmission Facilities in EIPC 2020 Roll-Up Case Includes ALL new/upgraded facilities (161 kV and above) that are projected to be in-service by 2020

РА	State(s)	From Bus #	From Bus Name	To Bus #	To Bus Name	Ckt	Voltage (kV)	Line Length (miles)	Expected In- Service Year	Planning Status	Project Type	Project Description
ISO-NE	VT	107010	Newfane 345.00	107700	Newfane 115.00	1	345/115	N/A	2011	State/Budget Approval	Reliability	New substation and transformer
ISO-NE	MA	114063	West Amesbury 345.00	114075	West Amesbury 115.00	1	345/115	N/A	2011	State/Budget Approval	Reliability	New transformer
ISO-NE	MA	111133	Long Trm I SM 345.00	111134	Long Trm LSM 345.00	1	345/115	N/A	2012	Planned	Reliability	New transformer
ISO-NE	MA	113266	Pratts Junction 230.00	113292	Pratts Junction 115.00	2	230/115	N/A	2011	Planned	Reliability	New second transformer
ISO-NE	MA	113001	Bear Swamp 230.00	113008	Bear Swamp 115.00	2	230/115	N/A	2011	Planned	Reliability	New second transformer
ISO-NE	MA/VI	113001	Bear Swamp 230.00	113266	Pratts Jct 230.00	1	230	74	2011	Planned	Reliability	Retension existing line
ISO-NE	MA	115265	Auburn 345.00	115453	Auburn 115.00	1	345/115	N/A	2012	Planned	Reliability	New second transformer
ISO-NE	MA	116081	Agawam 345.00	116152	Agawam 115.00	1	345/115	N/A	2012	State/Budget Approval	Reliability	New substation & transformers
ISO-NE	MA	116081	Agawam 345.00	116152	Agawam 115.00	2	345/115	N/A	2013	State/Budget Approval	Reliability	New substation & transformers
ISO-NE	MA	116045	Ludlow 345.00	116081	Agawam 345.00	1	345	17	2013	State/Budget Approval	Reliability	2-1590 ACSR
ISO-NE	MA	116045	Ludiow 345.00	116120	Ludlow 115.00	2	345/115	N/A	2013	State/Budget Approval	Reliability	Two replacement transformers
ISO-NE	MA	116081	Agawam 345.00	119116	North Bloomfield 345.00	1	345	18	2013	State/Budget Approval	Reliability	2-1590 ACSR
ISO-NE	MA	119116	North Bloomfield 345.00	119246	Frost Bridge 345.00	1	345	35	2013	Planned	Reliability	2-1590 ACSR
ISO-NE	AM	119246	Frost Bridge 345.00	120992	Frost Bridge 115.00	2	345/115	N/A	2013	Planned	Reliability	New second transformer
ISO-NE	СТ	110104	Millstone 345.00	119051	Lake Road 345.00	1	345	29	2013	Planned	Reliability	2-1590 ACSR Millstone Manchester line tanned into Card Street
ISO-NE	CT	119064	Card Street 345.00	119004	Manchester 345.00	1	345	29	2013	Planned	Reliability	Millstone-Manchester line tapped into Card Street
ISO-NE	CT/RI	119051	Lake Road 345.00	117001	West Farnum 345.00	1	345	25	2013	Planned	Reliability	2-1590 ACSR
ISO-NE	MA	114734	Brayton Point 345.00	114900	Plainville 345.00	1	345	20	2011	State/Budget Approval	Reliability	Brayton Point-Bellingham line tapped into Plainville
ISO-NE	MA	114900	Plainville 345.00	114733	Bellingham 345.00	1	345	15	2011	State/Budget Approval	Reliability	Brayton Point-Bellingham line tapped into Plainville
ISO-NE	PI	117301	Plainville 345.00	117332	Plainville 115.00	3	345/115	N/A	2011	State/Budget Approval	Reliability	New substation & transformer
ISO-NE	RI	117301	Kent County 345.00	117332	West Farnum 345.00	1	345	17	2012	State/Budget Approval	Reliability	2-954 ACSR
ISO-NE	MA/RI	113264	Millbury 345.00	117001	West Farnum 345.00	1	345	21	2013	Planned	Reliability	2-1590 ACSR
JEA	FL	404953	GEC	404855	Nocatee	30	230	4.4	Dec 1, 2014	State/Budget Approval	Reliability	GEC = Greenland Energy Center
JEA	FL	404780	Jax Heights	405015	Yellow Water	1	230	11	Dec 1, 2012	State/Budget Approval	Reliability	
LGEE	KY IA	324145	5GRAHMVL	360496	5C-33 Stoppo	2	161	2	2012	State/Budget Approval	Reliability	Add second Grahamville-DOE 161kV line
MAPP	ND	652400	Williston	652421	Williston	1	230/115	4 N/A	4/1/2010	Planned	Reliability	
MAPP	Manitoba	667077	St Joseph Wind 1	667048	Letellier	1	230	4.8	6/1/2010	Planned	Reliability	New transmission line
MAPP	Manitoba	667078	St Joseph Wind 2	667048	Letellier	1	230	4.8	6/1/2010	Planned	Reliability	New transmission line
MAPP	ND	652400	Williston	652216	Watford City	1	230	42	12/1/2010	Planned	Reliability	Uprate from 115kV to 230kV
MAPP	ND	652400	Williston	661084	lioga	1	230	45	12/31/2010	Planned	Reliability	New transmission line
MAPP	ND	652216	Watford City	659302	Charlie Creek	1 1	230	34	1/2/2011	Planned	Reliability	Uprate from 115kV to 230kV
MAPP	ND	652216	Watford City Sub	N/A	N/A	N/A	230/115	N/A	1/2/2011	Planned	Reliability	upgrade sub from 115 to 230/115
MAPP	WI	681544	Poplar Lake	681534	Apple River	1	161	24	5/31/2011	Planned	Reliability	upgrade line
MAPP	Manitoba	667054	Herblet Lake	667059	Ralls Island	1	230	103	8/31/2011	Planned	Reliability	New transmission line
MAPP	Manitoba	667054	Herblet Lake	667019	Wuskwatim	1,2	230	85.2	8/31/2011	Planned	Reliability	New double ckt transmission line
MAPP	MN	652582	Appledorn	N/A	tap	1	230	74.6	10/1/2011	Planned	Reliability	230kV line
MAPP	MN	652582	Appledorn sub	N/A	N/A	N/A	230	N/A	10/1/2011	Planned	Reliability	
MADD	MN	620447	Case Lako sub	N/A	N/A	N/A	220/115	NI/A	12/21/2011	Proposed	Poliability	It is between Bemidji and Clay Boswell. upgrade 115kV
WIAFF	IVIIN	020447	Cass Lake Sub	IN/A	IN/A	IW/A	230/113	N/A	12/31/2011	Floposeu	Reliability	to 230/115kV
MAPP	MN	652582	Appledorn	652604	Appledorn	1	230/69	N/A	12/31/2011	Planned	Reliability	Neu transmission line
MAPP	SD SD	652541	Big Bend	659313	Reliance	1	230	25	2/1/2012	Proposed	Reliability	It passes throug Lower Brule New transmission line
MAPP	SD	659313	Reliance sub	N/A	N/A	N/A	230/69	N/A	2/1/2012	Proposed	Reliability	n passes throug zoner brate. New transmission mite.
MAPP	SD	659310	Witten Sub	N/A	N/A	N/A	230	N/A	2/1/2012	Proposed	Reliability	upgrade sub from 115 to 230/115
MAPP	SD	659310	Witten	652495	Witten	1	230/115	N/A	2/1/2012	Proposed	Reliability	
MAPP	ND, MT	652409	Wolf Point	652421	Williston	1	230	94	3/1/2012	Proposed	Reliability	The WOLFPT is 115kV. (built 230 oper. At 115) passes
MAPP	ND	652426	Bismarck KU3A	652427	Bismarck K113A	1	230/115	N/A	6/1/2012	Planned	Reliability	
MAPP		652486	Philip, KV1A	652487	Philip	1	230/115	N/A	6/25/2012	Planned	Reliability	
MAPP	MN	608626	Boswell (Bemidji)	620345	Wilton (clay Boswell)	1	230	72	7/1/2012	Proposed	Reliability	passes through cass lake. New line
MAPP	MN	620447	Cass Lake	620197	Cass Lake	1	230/115	N/A	9/30/2012	Proposed	Reliability	New transformer
MAPP	ivianitoba	00/043		66/048	Letellier	1	230	11.1	10/1/2012	Planned	Reliability	New transmission line Sectionalize existing D54C line into new Meenawa
MAPP	Manitoba	667071	Neepawa	667070	Cornwallis	1	230	35.1	11/30/2012	Planned	Reliability	Station
MAPP	Manitoba	667071	Neepawa	667035	Dorsey	1	230	107.8	11/30/2012	Planned	Reliability	
MAPP	ND	659143	Blaisedale	659144	Blaisedale	1	230/115	N/A	12/1/2012	Proposed	Reliability	
MAPP	14/1	681545	Lutkin sub	N/A	N/A Poplar Lako	N/A	161/69	N/A	12/31/2012	Planned	Reliability	
MAPP MAPD	Manitoba	667090	Rockwood	668122	Poplar Lake	1	230/110	N/A	0/1/2013	Planned	Reliability	
MAPP	SD	652507	Fort Thompson	659312	Lower Brule	1	230	9.3	12/31/2013	Planned	Reliability	
MAPP	SD	652541	Big Bend	659312	Lower Brule	1	230	2.1	12/31/2013	Planned	Reliability	
MAPP	SD	659312	Lower Brule Sub	N/A	N/A	N/A	230	N/A	12/31/2013	Planned	Reliability	Substaion
MAPP	Manitoba	667042	Riel Stn	667501	Riel Stn	1	500/230	N/A	3/30/2014	Planned	Reliability	Now transmission line
MAPP MAPP	Manitoba	667035	Dorsev	667053	Portage South	2	230	43.5	11/30/2014	Proposed	Reliability	To double ckt an existing single ckt line
MAPP	WI	602024	Marshland	601043	La Crosse Tap	1	161	24.2	12/31/2015	Planned	Reliability	upgrade rating
MAPP	Manitoba	667000	Conawapa	667001	Henday	1,2,3,4	230	19	10/1/2017	Proposed	Reliability	New quadruple ckt transmission line
MAPP	Manitoba	667000	Conawapa	667012	Long Spruce	1	230	34	10/1/2017	Proposed	Reliability	New transmission line
MAPP	Manitoba	667000	Conawapa (dc)	667041	Riel (dc)	N/A	500	833	10/1/2017	Proposed	Reliability	New 500kV bipole DC transmission line
MAPP	Manitoba	667000	station	N/A	N/A	N/A	500	N/A	10/1/2017	Proposed	Reliability	New convertor station
MAPP	Manitoba	667041	Riel (dc) converter station	N/A	N/A	N/A	500	N/A	10/1/2017	Proposed	Reliability	New convertor station
MAPP	Manitoba	667500	Dorsey	667501	Riel	1	500	31	10/1/2018	Proposed	Reliability	New transmission line
MISO	SD	601031	Brookings County	620313	Big Stone	1	345	35	12/31/2017	Proposed	Multi Value	MVP 01. P2221-345 kV transmission for collection of
		601021		601050	J							Wind energy
MISO	SD/MN	601031,	Brookings County-Lyon	601050,	Helena-Lake Marion-Hampton	1	345	206 5	4/27/2015	State/Budget Approval	Multi Value	Mountain-Helena-Lake Marion-Hampton Corper 245 M
WIJU	JUNNIN	601048,	County-Cedar Mountain	601052,	Corner	'	JTJ	200.0	712112013	Stater Budget Approval	wall value	line.
MISO	MN	601054	Hazel	602008	Minnesota Valley tap	1	230	6	4/27/2015	State/Budget Approval	Multi Value	MVP 02. P1203-Hazel-MN Valley tap 230

New or Upgraded Transmission Facilities in EIPC 2020 Roll-Up Case

10		•
Includes ALL new/upgraded f	acilities (161 kV and above) that are proj	ected to be in-service by 2020

	ΡΑ	State(s)	From Bus #	From Bus Name	To Bus #	To Bus Name	Ckt	Voltage (kV)	Line Length (miles)	Expected In- Service Year	Planning Status	Project Type	Project Description
	MISO	MN	601048	Lyon County	601054	Hazel	1	345	23.5	4/27/2015	State/Budget Approval	Multi Value	MVP 02. P1203-Lyon County-Hazel 345
	MISO	IA,MN	631144	Mitchell Co	631138	Lakefield Junction	2	345	86	12/31/2015	Proposed	Multi Value	MVP 03. P3213-Lakefield Junction - Mitchell County 345 kV line.
	MISO	IA	636000	Webster-Burt-Osgood	635368	Wisdom-Sheldon	1	345	138	12/31/2016	Proposed	Multi Value	MVP 04. P3205-Webster to Sheldon 345 kV line
	MISO	IA IA	636199	Blackhawk	636200	Blackhawk	1	345/161	112	12/31/2018	Proposed	Multi Value	MVP 04. P3211-Blackhawk 345/161 kV transformer
ŀ	MISO		441025	Fllopdolo	420212	Rig Stopp	2	245	114	0/1/2010	Droposed	Multi Value	MVP 06. P2220-Build 345 kV double circuit line from Big
	WI30	ND	001025	Elienuale	020313		2	340	114	0/1/2019	Proposed	wull value	Stone to Ellendale.
	MISO	IA,MO	631143	Ottumwa	344002	West AdairTap	1	345	57.75	6/1/2014	Proposed	Multi Value	increased North-South capability
ľ	MISO	МО	300039	Fairport	344002	West AdairTap	1	345	101.13	6/1/2014	Proposed	Multi Value	MVP 07. P2248-345 kV line for MO wind collection and increased North-South canability
ľ	MISO	мо	300049	Thomas Hill	344002	West AdairTap	1	345	47.25	6/1/2014	Proposed	Multi Value	MVP 07. P2248-345 kV line for MO wind collection and increased Nath South compliance
ŀ	MISO	мо	344002	West AdairTap	345436	Palmyra	1	345	64	6/1/2018	Proposed	Multi Value	MVP 08. P3170-345 kV line for MO wind collection and
ŀ	MISO		347288	Inava	347679	Meredosia	1	345	25	8/1/2015	Proposed	Multi Value	MVP 09. P2235-345 kV line for IL wind collection and
ŀ	MISO		247/70	Meredesia	2470/2	Deumee	1	245	40	6/1/2015	Dremonal	Multi Velue	increased East-West energy transfer MVP 09. P2236-345 kV line for IL wind collection and
ŀ	10130		34/0/9	meredosia	347962	Pawnee		340	03	0/1/2015	Proposed	wull value	increased East-West energy transfer MVP 09, P3017-345 kV line for II, wind collection and
	MISO	IL	347679	Meredosia	348060	SE Quincy	1	345	45	6/1/2018	Proposed	Multi Value	increased East-West energy transfer
	MISO	MO,IL	345435	Palmyra Tap	348060	SE Quincy	1	345	15	6/1/2018	Proposed	Multi Value	increased East-West energy transfer
	MISO	IL	347962	Pawnee	347945	Pana	1	345	22	6/1/2019	Proposed	Multi Value	MVP 10. P3169-Pawnee to Pana 345 kV line
	MISO	IL	347945	Pana	348961	Mt. Zion	1	345	30	6/1/2019	Proposed	Multi Value	Zion in Illinois.
	MISO	IL	348961	Mt. Zion	347340	Kansas	1	345	52	6/1/2019	Proposed	Multi Value	MVP 11. P2238-Build 345 kV circuit from Mt. Zion to Kansas
ľ	MISO	IL	347340	Kansas	249521	Sugar Creek	1	345	35	6/1/2019	Proposed	Multi Value	MVP 11. P2240-Build 345 kV circuit from Kansas to
ŀ	MISO	IN	255268	Revnolds	255101	Burr Oak	1	345		12/31/2013	Proposed	Multi Value	MVP 12. P3203-Build 345 kV circuit from Reynolds to
ŀ	MISO	IN	255101	Burr Ook	200101	Llinlo		245		12/21/2012	Droposod	Multi Value	Burr Oak to Hiple. MVP 12. P3203-Build 345 kV circuit from Reynolds to
	10130		255101		200100	Hiple	-	340		12/31/2013	Proposed	wull value	Burr Oak to Hiple. MVP 13. P2260-345 kV line for interconnection of wind
	MISO	OH	238569	Beaver	238654	Davis Besse	2	345	19	6/1/2013	Proposed	Multi Value	resources
	MISO	IL	348887	Sidney	348882	Rising	1	345	27	6/1/2017	Proposed	Multi Value	Sidney in Illinois.
	MISO	IL	349730	Fargo	636635	Oak Grove	1	345	102	12/31/2016	Proposed	Multi Value	MVP 18. P3022-Fargo-Galesburg-Oak Grove (MEC) 345 kV Line.
	MISO	MN	601051 601309	Hampton Corners- North Rochester	601044	North La Crosse	1	345	118	9/30/2015	State/Budget Approval	Reliability	P1024- Hampton Corners-North Rochester-North La Crosse 345 kV line
	MISO	MO	345543	Enon Tap	300597	Enon	1	161	1	6/1/2011	Planned	Reliability	P1238-Extend 1 mile of 161 kV to AECI Enon Substation
ľ	MISO	IN	249608	Cayuga	249615	Frankfort	1	230	0	6/1/2013	Planned	Reliability	P1244-Upgrade wave traps at Cayuga and Frankfort to
ľ	MISO	IN	249619	Greentown	249627	Peru SE	1	230	0	6/1/2011	Planned	Reliability	P1247-Upgrade Greentown to Peru SE 230kV line to
ľ	MISO	IN	240424	Nablaguilla	240410	Coict	1	220	0	6/1/2011	Diappod	Doliability	P1253-Replace 800A wave trap with a 2000A wave trap.
	WISO	IIN	249020	NODIESVIIIe	249010	Geisi		230	0	0/1/2011	Platitieu	Reliability	Increase intertaining for hobiesville to Geist 230kV line.
	MISO	IN	253620	AB Brown 345	249510	Gibson	1	345	40	10/31/2011	Under Construction	Reliability	P1257-New 345 kV transmission line Gibson (Cinergy) to AB Brown (Vectren) to Reid (BREC)
	MISO	IN/KY	253620	AB Brown 345	340562	Reid	1	345	24	10/31/2011	Planned	Reliability	P1257-New 345 kV transmission line Gibson (Cinergy) to AB Brown (Vectren) to Reid (BREC)
ľ	MISO	IN	249520	Speed 345	249850	Speed 138	1	345/138	0	6/1/2013	State/Budget Approval	Reliability	P1264-Replace existing 345/138 transformer at Speed with a new transformer rated at 3 0000 or higher
ŀ	MISO	IA	631139	Hazelton 345	631050	Hazelton 161	1	345/161	0	4/30/2011	State/Budget Approval	Reliability	P1288-Replace Hazleton 345/161 kV transformer #1
ŀ	MISO	IA	631140	Salem	631139	Hazelton	1	345	81	12/31/2011	Planned	Reliability	With 448 MVA unit P1340-Build a new Hazleton - Salem 345 kV line
ŀ	MISO	IA	631146	Lewis Fields	631147	Lewis Fields	1	161/115	0	12/31/2012	Planned	Reliability	P1342-Lewis Fields transformer
	MISO	IA	631148	Morgan	631149	Morgan	1	345/161	0	6/1/2013	Planned	Reliability	P1344-Morgan Valley 345/161 kV transformer
	MISO	ND	661053	Heskett	661054	Heskett	1	230/115	0	12/31/2014	Planned	Reliability	P1355-Heskett 230/115 kV P150-Establish a new Prairie State 345 kV generator
	MISO	IL	348774	Baldwin	345669	Rush	1	345	26	10/1/2010	Planned	Reliability	interconnection P150-Establish a new Prairie State 345 kV generator
	MISO	IL	348778	Stallings	348773	Prairie State	1	345	7.5	10/1/2010	Planned	Reliability	interconnection
	MISO	IL	348827	7W	348773	Prairie State	1	345	1.5	10/1/2010	Planned	Reliability	interconnection
	MISO	IN	249630	Staunton	249633	Wabash River	1	230	0	6/1/2011	Planned	Reliability	P1514-Uprate Wabash River to Staunton 23002 to 100C summer operating temperature and 80C winter (559MVA).
ľ	MISO	IN	249621	08KOK HP	249635	Webster Street		230	0	6/1/2012	State/Budget Approval	Reliability	P1561-Retire existing 1600A circuit switcher and complete the Webster St ring
ľ													P1568-Qualitech Sub- Install one 345/138kv, 300Mva Xtr and 2-345kv Bkrs and 1-138kv Bkr to provide second
	MISO	IN	249889	Qualitech	249518	Qualitech	1	345/138	0	6/1/2013	State/Budget Approval	Reliability	138kv source to proposed Hendricks Co 138kv system
ŀ		_											P1607-Loop the Chamberlin - Mansfield 345 kV Line in
	MISO	OH	238615	Chamberlin	238941	Manstield	1	345	2	6/1/2014	Planned	Reliability	And out of Hanna Substation creating a Chamberlin - Hanna and a Hanna - Mansfield 345 kV Line.
	MISO	PA	239280	Cranberry	239281	Cranberry	2	500/138	0	6/1/2012	Planned	Reliability	P1612-Construct a 500/138kV Sub with four exits in the Cranberry/Adams Township area.
ľ	MISO	MN	631041	Lakefield Junction	631040	Heron Lake	1	161	17	12/31/2012	Planned	Reliability	P1618-Rebuild Heron Lake-Lakefield Jct 161kV line,
1.				1				1					Learning the man
РА	State(s)	From Bus #	From Bus Name	To Bus #	To Bus Name	Ckt	Voltage (kV)	Line Length (miles)	Expected In- Service Year	Planning Status	Project Type	Project Description	
--------------	----------	------------------	----------------------	------------------	---------------------	-----	-----------------	---------------------------	------------------------------	-----------------------	----------------------------	---	
MISO	IA	631115	Ottumwa		capacitor		161	0	5/30/2011	State/Budget Approval	Reliability	P1641-Install a 161kV 50 MVAR cap bank at the Ottumwa Generating Station.	
MISO	IA	631070	Anita		capacitor		161	0	12/31/2013	Planned	Reliability	P1643-Install a 161kV 24 MVAR cap bank at the Anita substation.	
MISO	IA	631074	Grand Junction		capacitor		161	0	12/31/2013	Planned	Reliability	P1644-Install a 161kV 24 MVAR cap bank at the Grand Junction substation.	
MISO	IA	631096	Grand Mound	631098	Maquoketa	1	161	14.5	12/31/2016	Planned	Reliability	P1744-Reconductor 161kV from Maquoketa to Grand Mound (old East Calamus-Maguoketa 161kV line)	
MISO	OH	238654	Davis Besse			3	345	0	12/17/2010	State/Budget Approval	Reliability	P1909-Reconfigure the Davis Besse switch yard by extending J and K buses and adding 345kV breakers	
MISO	MN	601015	Blue Lake	601004	Wilmarth	1	345	0	12/1/2010	Planned	Reliability	P1956- Wilmarth and Blue Lake phase raise the line to allow for a normal 100 degree C operation	
MISO	IN	253620	AB Brown 345	249510	AB Brown 138	1	345	0	5/31/2011	Planned	Reliability	P1970-New 448MVA 345/138kV transformer in addition to the Gibson-AB Brown-Reid 345kV line	
MISO	IN	249508	Dresser	249721	Dresser	3	345/138	0	6/1/2011	State/Budget Approval	Reliability	P2050-Add a 3rd 345/138kV transformer at Dresser Sub	
MISO	IN	254529	Petersburg	254638	Petersburg	2	345/138	0	6/1/2012	Planned	Reliability	P2053-Replace and upgrade existing East and West 345/138kV autotransformer at Petersburg Substation.	
MISO	MO	344648	Gray Summit	344650	Gray Summit	2	345/138	0	12/1/2010	Planned	Reliability	P2061-Install a 345 kV six position ring bus making Labadie - Tyson 1 & 2 345 kV lines and add a second 560 MV/0 345/138 kV transformer	
MISO	IL	348856	Latham	348851	Oreana	1	345	8.5	12/1/2014	Planned	Reliability	200 WV 345/1362 vi antistimier. P2068-Convert Oreana 345 kV Bus to 6-Position Ring Bus with 3000 A Capability: Construct 8.5 miles of 345 kV line (2-954 kcmil ACSR conductor or equivalent capability) from Oreana Substation to 345 kV Line 4571 tap to Latham Substation. 3-345 kV PCB's at Orean	
MISO	IL	349265	S Bloomington	348874	S Bloomington	1	345/138	0	12/1/2014	Planned	Reliability	P2069-South Bloomington Area 345/138 kV Substation - Install 345/138 kV, 560 MVA Transformer. Extend new 345 kV line approximately 5 miles from Brokaw Substation to South Bloomington Substation. Install 1- 138 kV PCB at South Bloomington Substation, and 2- 345	
MISO	ОН	239313	Fulton 345	238738	Fulton 138	1	345/138	0	6/1/2014	Proposed	Reliability	P2250-Construct Fulton Substation near the crossing point of the Allen Junction-Midway 345kV and Delta- Swanton 138kV lines, loop both lines into the new 345/138kV substation	
MISO	IA	631116	Bridgeport	631104	EIC	1	161	0	12/31/2010	Under Construction	Reliability	P2359-Upgrade the Bridgeport 161kV sub & the EIC sub. These upgrades combined with the Tri-County upgrades will allow for the Bridgeport 69kV sub to be retired. The Bridgeport 69kV sub needs to be retired to allow for the plant to expand.	
MISO	IA	631052	Lansing	681523	Genoa	1	161	0	12/31/2010	Planned	Reliability	P2365-Upgrade the terminal limits & relaying on the Lansing-Genoa 161kV.	
MISO	IL	349730	Fargo	349740	Maple Ridge	1	345	20	12/1/2016	Planned	Reliability	P2472-Tap existing 345kV line from Duck Creek to Tazewell and create new Maple Ridge Substation (\$6.5M)	
MISO	MN	608626 620447	Boswell Cass Lake	620447 608626	Cass Lake Wilton	1	230 230	50 18	12/31/2012	State/Budget Approval	Reliability Reliability	P279-Boswell - Wilton 230 P279-Boswell - Wilton 230	
MISO	IL	346895	Coffeen	346886	Coffeen N	2	345	0	12/1/2010	State/Budget Approval	Economic	P2829-Install a second 345 kV bus tie between Coffeen and Coffeen N ring busses. Replace Coffeen N. wave trap and Ramsey E. switch to increase line rating to 1195 MVA.	
MISO	MN/ND	657792	Maple River	601046	Alexandria SS	1	345	135	3/31/2015	State/Budget Approval	Reliability	P286-Maple River- AlexandriaSS - Waite Park - Monticello 345 ckt 1, Sum rate 2085	
MISO	MN	601046	Alexandria SS	601047	Waite Park	1	345	55	3/31/2015	State/Budget Approval	Reliability	P286-Maple River- AlexandriaSS - Waite Park - Monticello 345 ckt 1, Sum rate 2085	
MISO	MN	601047	Waite Park	601010	Monitcello	1	345	35	3/31/2015	State/Budget Approval	Reliability	P286-Maple River- AlexandriaSS - Waite Park - Monticello 345 ckt 1, Sum rate 2085	
MISO	IN	249626	Noblesville	249618	Geist	1	230	0.6	12/1/2011	State/Budget Approval	Reliability	P2874-Relocate section of 23007 between Noblseville and Giest to new ROW	
MISO	IN	254529	Petersburg	254521	Francis	1	345	111.42	6/1/2013	Proposed	Reliability	P2897-Increase line rating from 956 to 1195 MVA	
MISO	IL	636600	Sub 39 3	636601	Sub 39 5	2	345	0	6/1/2013	Proposed	Reliability	P2937-Add a second 345-161 kV xfmr. Expand 345 kV	
MISO	IL	636600	Sub 39 3	636605	MEC Cordova 3	1	345	15.5	6/1/2014	Proposed	Reliability	P2938-Change out structures to increase rating.	
MISO	IA	635200	Raun	652564	Sioux City	2	345	23	6/1/2016	Proposed	Reliability	P2939-Construct a 23 mile 345 kV line between the Raun and Sioux City Substations	
MISO	MO	300617	Scruggs	344028	Apache Flats	1	161	0	6/1/2011	Planned	Reliability	P2970-Apache Flats 161 kV Substation - Install 1-161 kV, 2000 A PCB and necessary metering and relaying to provide a delivery point for Associated Electric's Scruggs 161-69 kV Substation.	
MISO	IN	249525	Westwood	249874	Westwood	1	345/138		6/1/2015	State/Budget Approval	Reliability	full transformer rating	
	MN	620184	Winger	620238	Winger	1	230/115	6	6/1/2014	Planned	Reliability	P971-Winger 230/115 kV Transformer upgrade MVP17: P2844-Construct a new Pleasant Prairie-Zion	
		077432		2/481/		1	340	75 10	12/21/2020	Proposed		Energy Center 345-kV line. MVP 05. P2832-Construct a new Dubuque Co-Spring	
	IVIIN/WI	631180		093668	Spring Green		345	/5.13	0/1/2020	Proposed	Multi Value	Green 345kV line MVP 05. P2832-Construct a new Spring Green-Cardinal	
MISU/ATC LLC	WI	693668	Spring Green	699829			345	28	8/1/2018	Proposed	Multi Value	345kV line MVP 05. P3127-Construct a new North La Crosse-North	
MISO/ATC LLC	WI	601044	North La Crosse	699818	North Madison	1	345	136.3	12/31/2018	Proposed	Multi Value	Madison 345kV line MVP 05, P3127-Construct a new North Madison.	
MISO/ATC LLC	WI	699818	North Madison	699829	Cardinal	1	345	20.5	12/31/2018	Proposed	Multi Value	Cardinal 345kV line	

10		•
ncludes ALL new/upgraded facilitie	s (161 kV and above) that are projec	ted to be in-service by 2020

PA	State(s)	From Bus #	From Bus Name	To Bus #	To Bus Name	Ckt	Voltage (kV)	Line Length (miles)	Expected In- Service Year	Planning Status	Project Type	Project Description
MISO/ATC LLC	WI	699630	Kewaunee 345	699620	Kewaunee 138	2	345/138	0	5/1/2011	Proposed	Reliability	P1950-Reconfigure Kewaunee 345/138 kV switchyard and install a 2nd Kewaunee 345-138 kV transformer of 500 MVA.
MISO/ATC LLC	WI	698863	Bluemound	698865	Bluemound	3	230/138	0	11/30/2011	Planned	Reliability	P2819-Replace Bluemound 230/138kV transformer T3 with a 400 MVA unit
MISO/ATC LLC	WI	699262	Bluemound	699263	Bluemound	1	230/138	0	5/31/2012	Proposed	Reliability	P2820-Replace Bluemound 230/138kV transformer T1 with a 400 MVA unit
MISO/ATC LLC	WI	693636	Barnhart 345	693607	Branch River 345	1	345	35.5	6/1/2018	Proposed	Reliability	P3206. North - East 345 kV line for G833-834 long-term solution
MISO/ATC LLC	WI	693636	Branch River 345	699304	Forrest Jct	2	345	12.88	6/1/2018	Proposed	Reliability	P3206. North - Forrest 345 kV line for G833-834 long- term solution
MISO/ATC LLC	WI	699119	Rockdale	699829	Cardinal	1	345	32.14	6/1/2013	Planned	Reliability	P356-Cardinal-Rockdale 345 and Cardinal 345/138
MISO/ATC LLC	WI	602025	Monroe Co	699002	Council Creek	1	161	17.3	6/1/2013	Planned	Reliability	P574 Monroe County - Council Creek 161 kV line
MISO/ATC LLC	WI	699002	Council Creek	699239	Council Creek	1	161/138		6/1/2013	Planned	Reliability	P574-Monroe County - Council Creek 161 kV line Replace terminal equipment at Zion to increase the line
MISO/ATC LLC	WI/IL	699432	Pleasant Prairie	270941	Zion	1	345	11.4	3/25/2011	Planned	Reliability	capability
MISO/ATC LLC	MI	699581	Arnold	699348	Arnold	1	345/138	0	6/1/2015	Proposed	Reliability	via a new 345/138 kV transformer
MISO/ATC LLC	WI	699829	Cardinal	699820	Cardinal	1	345/138	0	6/1/2013	Planned	Reliability	P356-Construct a new 345/138 kV substation at Cardinal (next to the existing West Middleton sub), install a 345/138 kV 500 MVA transformer at Cardinal, construct 47.9 miles overhead 345 kV line from Albion to Cardinal/West Middleton, modifications to the existing West Middleton, substation, construct a new Albion 345 kV switching station. Facility costs listed in the facility table are for the southern route.
MISO/ATC LLC	WI	699247	Arcadian	699250	Arcadian	1	345/138	0	6/1/2015	Proposed	Reliability	Replace two smaller Arcadian 345/138 kV transformers with a 500 MVA unit
MISO/ATC LLC	WI	693668	Spring Green	699114	Spring Green	1	345/138	0	8/1/2018	Proposed	Multi Value	MVP 05. P2832-Construct a new Spring Green-Cardinal 345kV line
MISO/ITC	MI	265076	Rapson (19WYATT)	265086	Rapson (19WY_EAST)	1	345/120		12/31/2015	Planned	Multi Value	MVP 15. P3168-Double circuit 345 kV transmission for integration of wind resources
MISO/ITC	MI	265075	Baker (REESE)	256026	Thetford	1, 2	345		12/31/2015	Planned	Multi Value	MVP 15. P3168-Double circuit 345 kV transmission for integration of wind resources
MISO/ITC	MI	256022	Roosevelt	256024	Tallmadge	1	345	0	12/31/2010	Planned	Reliability	P1799-Remove the SAG limit on: Roosevelt - Tallmadge
MISO/ITC	MI	256500	Murphy	256499	Murphy	4	345/138	0	6/1/2011	Planned	Reliability	P2500-Install a second 345/138kV transformer at Murphy substation
MISO/ITC	MI	256509	Weeds Lake	256000	Argenta	1	345	10	6/1/2013	Planned	Reliability	P662-Loop the 345kV Argenta - Robinson Park 345kV circuit into a new 345/138kV EHV substation called Weeds Lake.
MISO/ITC	MI	265076	Rapson (19WYATT)	265077	Sandusky (19W-S-G)	1	345	28	12/31/2015	Planned	Multi Value	MVP 15. P3168-Double circuit 345 kV transmission for integration of wind resources
MISO/ITC	MI	265076	Rapson (19WYATT)	264706	19GRNEC	1, 2	345	65	12/31/2015	Planned	Multi Value	MVP 15. P3168-Double circuit 345 kV transmission for integration of wind resources
MISO/ITC	MI	264706	19GRNEC	265077	Sandusky (19W-S-G)	2	345	22	12/31/2015	Planned	Multi Value	MVP 15. P3168-Double circuit 345 kV transmission for integration of wind resources
MISO/ITC	MI	264706	19GRNEC	264746	Fitz (19STOGA)	2	345	16	12/31/2015	Planned	Multi Value	MVP 15. P3168-Double circuit 345 kV transmission for integration of wind resources
MISO/ITC	MI	265076	Rapson (19WYATT)	265086	Rapson (19WY_EAST)	2	345/120		12/31/2015	Planned	Multi Value	MVP 15. P3168-Double circuit 345 kV transmission for integration of wind resources
MISO/ITC	MI	265075	Baker (REESE)	256007	Hampton	1, 2	345		12/31/2015	Planned	Multi Value	MVP 15. P3168-Double circuit 345 kV transmission for integration of wind resources
MISO/ITC	MI	265075	Baker (REESE)	265076	Rapson (19WYATT)	1	345	56	12/31/2015	Planned	Multi Value	MVP 15. P3168-Double circuit 345 kV transmission for integration of wind resources
MISO/ITC	MI	265075	Baker (REESE)	256027	Titbawaassee (via Manning)	1	345		12/31/2015	Planned	Multi Value	MVP 15. P3168-Double circuit 345 kV transmission for integration of wind resources
MISO/ITC	MI	265075	Baker (REESE)	264635	Pontiac	1	345		12/31/2015	Planned	Multi Value	MVP 15. P3168-Double circuit 345 kV transmission for integration of wind resources
MISO/ITC	MI	264746	Fitz (19STOGA)	264635	Pontiac	1	345		12/31/2015	Planned	Multi Value	MVP 15. P3168-Double circuit 345 kV transmission for integration of wind resources
MISO/ITC	MI	264746	Fitz (19STOGA)	264805	Blackfoot	1	345		12/31/2015	Planned	Multi Value	MVP 15. P3168-Double circuit 345 kV transmission for integration of wind resources
MISO/ITC	MI	264746	Fitz (19STOGA)	264604	Belle River	1, 2	345		12/31/2015	Planned	Multi Value	MVP 15. P3168-Double circuit 345 kV transmission for integration of wind resources
MISO/ITC	MI	264883	B3N PS	264536	BUNCE	1	220	0	12/31/2010	Planned	Reliability	P1308-Returns the Bunce Creek to Scott 220 kV circuit to service and replaces the Phase Angle Regulator with 2 new phase angle regulating transformers in series
MISO/ITC	МІ	264580	Jewel	264635	Pontiac	1	345	0	12/1/2011	Proposed	Reliability	P1856-Cut the Pontiac section of the Belle River- Greenwood-Pontiac 345kV circuit into and out of Jewell station. Utilize an existing unused side of 345kV lower for one of the circuits into Jewell, and relocate the Jewell- Spokane 230kV circuit
NYISO	NY	126281	E. Fishkill	125022	E. Fishkill	2	345/115		2010	Planned	Reliability	Transformer #2 (Standby)
NYISO	NY	126277	Farragut	126272	East 13th Street	1	345		2010	Planned	Reliability	Refrigeration Cooling
NYISO	NY	126277	Farragut	126273	East 13th Street	1	345		2010	Planned	Reliability	Refrigeration Cooling
NYISO	NY	147980	vvillis i Patnode	147859	Pathode	1	230		2011 2011	Proposed Proposed	Reliability	1-795 ACSR
NYISO	NY	130761	Avoca	131154	Stony Ridge	1	230		2011	Planned	Reliability	1033.5 ACSR
NYISO	NY	131154	Stony Ridge	130763	Hillside	1	230		2011	Planned	Reliability	1033.5 ACSR
NYISO	NY	126277	Farragut	126275	East 13th Street	1	345		2011	Planned	Reliability	Reconductoring
PEC	NC	304803	6ASHEVL	304763	6ENKA SW	1	230	11.75	2010	State/Budget Approval	Reliability	115 to 230 kV Line Conversion & new 230/115 kV transformation
PFC	NC	304378	6RICHMON	304398	6FB-WODR	1	230	70	2011	State/Budget Approval	Reliability	Construct new 230 kV Line

РА	State(s)	From Bus #	From Bus Name	To Bus #	To Bus Name	Ckt	Voltage (kV)	Line Length (miles)	Expected In- Service Year	Planning Status	Project Type	Project Description
PEC	NC	304332	6ASHEB	306152	6PL GRDN	1	230	18.9	2011	State/Budget Approval	Reliability	Construct new 230 kV Line
PEC	NC	304348	6RKH	304361	6WESTEND	1	230	32	2011	State/Budget Approval	Reliability	Construct new 230 kV Line
PEC	NC	204205	ACLINTON	204251		1	230	28	2011	State/Pudget Approval	Poliability	Construct new 230 kV Line & new 230/115 kV substation
120	nic .	304203	OCLINION	304231		· ·	230	20	2011	State/Budget Approval	Reliability	
PEC	NC	304542	6FOLKSTN	N/A	N/A	N/A	230	N/A	2013	State/Budget Approval	Reliability	Construct 230/115 kV substation, loop in 230kV line
PEC	NC	304009	6HARRIS1	304159	6RTP230	1	230	18	2014	State/Budget Approval	Reliability	Construct new 230 kV Line
PEC	NC FL	304451	6PA-GRNV	304474	6DUP KIN	1	230	30	2017	Planned	Reliability	Construct new 230 kV Line
PEF	FL	403701	DISSTON	403704		1	230	4.21	2012	Planned	Reliability	New line
DEE	FL EI	403701	DISSION Mergen Deed	403702		1	230	3.5	2014	Planneu State/Dudget Approval	Reliability	New line
DEE	FI	403032	Morgan Road	406020		1	230	23	2011	State/Budget Approval	Reliability	New 220kV Tio Lino
PEF	FL	403032	l ake Tarnon	403030	Kathleen	1	500	44	2015	Planned	Reliability	New line
PEE	FL	402584	MYRTLELAKE	402585	NORTH LONGWOOD	1	230	3 13	2017	Planned	Reliability	Line ungrade
PEF	FL	402887	HINES ENERGY COMPLEX	402891	WEST LAKE WALES	2	230	21	2011	State/Budget Approval	Reliability	New line
PEF	FL	402891	DUNDEE	402883	INTERCESSION CITY	1	230	20	2010	State/Budget Approval	Reliability	Line upgrade
PEF	FL	402891	LOUGHMAN (FUT)	402883	INTERCESSION CITY	2	230	20	2010	State/Budget Approval	Reliability	New 230kV Line
DEE		402517		400517		1	220	0.5	2020	Dispand	Deliebility	New 230 kV Line
PEF	L L	403516	AWERICAN CEMENT; SECU	403517	BUSHNELL EAST		230	9.0	2020	Planned	Reliability	
PEF	FL	403518	BROOKRIDGE	403519	BROOKSVILLE WEST	1	230	3.32	2011	State/Budget Approval	Reliability	New 230kV Line
PEF	FL	403518	BROOKRIDGE	403532	Lecanto	1	230	22.36	2012	State/Budget Approval	Reliability	New 230kV Line
PEF	FL	403550	Brookridge	403559	Levy	1	500	42.400002	2017	Proposed	Reliability	New 500kV Line
PEF	FL	403551	Central Florida	403559	Levy	1	500	60.900002	2017	Proposed	Reliability	New 500kV Line
PEF	FL	402163	Camp lake	402160	Hancock Road	31	230	5.4	2017	Planned	Reliability	Line upgrade
PEF	FL	402068	Haines Creek	403521	CENTRAL FLORIDA	31	230	5.4	2017	Planned	Reliability	Line upgrade
PEF	FL	403514	Central Florida South	402163	CampLake	31	230	19.24	2017	Planned	Reliability	Line upgrade
PEF	FL	403514	Central Florida South	402164	Clermont East	31	230	4.88	2017	Planned	Reliability	Line upgrade
PEF	FL	402272	LK TARPN-B	402884	KATHLEEN	31	230	44	2017	Pianned	Reliability	New SOUKY Line
PEF	FL	403559	LEVY 500.00	403561	CFLA_SU500_500.00	31	500		2017	Proposed	Reliability	New SOUKV Line
DEE		403009	LEVT 500.00	403002		22	500		2017	Droposed	Reliability	New 500kV Line
DEE	FI	403555	CRVST RV 500.00	403302	LEVY 500.00	31	500		2017	Proposed	Poliability	New 500kV Line
PEF	FL	403535	CITPUS230 230.00	403537	CPVST PE 230.00	31	230		2017	Planned	Poliability	New 230 kV Line
PEF	FL	403513	CITRUS230 230.00	403523	CRYST RE 230.00	32	230		2017	Planned	Reliability	New 230 kV Line
PEF	FL	403518	BRKRIDGE 230.00	403519	BRKSVI W 230.00	32	230		2017	Planned	Reliability	Loop into BrksvlWest
PEF	FL	403518	BRKRIDGE 230.00	403519	BRKSVL W 230.00	33	230		2017	Planned	Reliability	Loop into BrksvIWest
DEE	E1	100510		100500			000		2017			Unloop the CREst sub from the existing CR-Brkrdge 230
PEF	FL FL	403518	BRKRIDGE 230.00	403522	CR PLANT 230.00	32	230		2017	Planned	Reliability	kV line
PEF	FL	403519	BRKSVL W 230.00	403836	HUDSN 230.00	32	230		2017	Planned	Reliability	Loop existing Brkrdge-Hudson 230 kV line into BrksvlWest
PEF	FL	403527	HOLDER 230.00	403533	ROSSPRAI 230.00	32	230		2017	Planned	Reliability	Loop Holder-CFL 230 kV line into RossPrairie substation
PEF	FL	403518	BRKRIDGE 230.00	403522	CR PLANT 230.00	33	230		2017	Planned	Reliability	New 230 kV line
PEF	FL	403515	ANDERSEN	403521	CENTRAL FLORIDA	31	230		2017	Planned	Reliability	New 230 kV line
PEF	FL	403515	ANDERSEN	403533	ROSS PRAIRIE	31	230		2017	Planned	Reliability	New 230 kV line
PEF	FL	402883	INTERCESSION CITY 230.00	402166	LK BRYAN 230.00	1	230	10	2012	Planned	Reliability	Line upgrade
PEF	FL	402883	INTERCESSION CITY 230.00	402166	LK BRYAN 230.00	2	230	10	2012	Planned	Reliability	Line upgrade
PEF	FL	403159	ARCHER 230.00	403171	HAILE SW 230.00	1	230		2015	Planned	Reliability	Line upgrade
PEF	FL	403159	ARCHER 230.00	403528	MARTIN W 230.00	1	230		2015	Planned	Reliability	Line upgrade
PEF	FL	403163	FT. WHITE SOUTH 230.00	403174	GINNIE 230.00	1	230		2015	Planned	Reliability	Line upgrade
PEF	FL	403165	NEWBERRY 230.00	403174	GINNIE 230.00	1	230		2015	Planned	Reliability	Line upgrade
PEF	FL	403171	HAILE SW 230.00	403174	GINNIE 230.00	1	230		2015	Planned	Reliability	Line upgrade
PJM	LN	206242	KITATINY	206260	NEWTON	1	230	-	6/1/2011	Planned	Reliability	Reconductor Kittatinny - Newton (2 mile JCPL section) 230kV circuit with 1590ACSS
PJM	NJ	206236	GILBERT	206233	G GARDNR	1	230	-	6/1/2011	Planned	Reliability	Reconductor the 8 mile Gilbert - Glen Gardner 230kV circuit
PJM	PA	200007	ELROY	200070	CENTERPT	1	500	-	6/1/2011	State/Budget Approval	Reliability	Install a new 500/230kV substation in PECO, and tap the high side to Elroy - Whitpain 500kV and the low side to North Wales - Perkiomen 230kV circuit
PJM	PA	200070	CENTERPT	200015	WHITPAIN	1	500	-	6/1/2011	State/Budget Approval	Reliability	Install a new 500/230kV substation in PECO, and tap the high side to Elroy - Whitpain 500kV and the low side to North Wales - Perkiomen 230kV circuit
PJM	PA	200070	CENTERPT	213479	CENTERPT	1	500/230	-	6/1/2011	State/Budget Approval	Reliability	Install a new 500/230kV substation in PECO, and tap the high side to Elroy - Whitpain 500kV and the low side to North Wales - Perkiomen 230kV circuit
PJM	PA	213827	N WALES8	213479	CENTERPT	1	230	-	6/1/2011	State/Budget Approval	Reliability	Install a new 500/230kV substation in PECO, and tap the high side to Elroy - Whitpain 500kV and the low side to North Wales - Perkiomen 230kV circuit
PJM	PA	213479	CENTERPT	213886	PERKIOMN	1	230	-	6/1/2011	State/Budget Approval	Reliability	Install a new 500/230kV substation in PECO, and tap the high side to Elroy - Whitpain 500kV and the low side to North Wales - Perkiomen 230kV circuit
PJM	PA	200009	JUNIATA	200071	JACKMTN1	1	500	-	6/1/2013	Planned	Reliability	Build Jack's Mountain 500kV substation - Tap the Keystone - Juniata and Conemaugh - Juniata 500kV, connect the circuits with a breaker and half scheme, and install new 400 MVAR capacitor
PJM	PA	200071	JACKMTN1	200011	KEYSTONE	1	500		6/1/2013	Planned	Reliability	Build Jack's Mountain 500kV substation - Tap the Keystone - Juniata and Conemaugh - Juniata 500kV, connect the circuits with a breaker and half scheme, and install new 400 MVAR capacitor
PJM	PA	200071	JACKMTN1	200072	JACKMTN2	1	500	-	6/1/2013	Planned	Reliability	Build Jack's Mountain 500kV substation - Tap the Keystone - Juniata and Conemaugh - Juniata 500kV, connect the circuits with a breaker and half scheme, and install new 400 MVAR capacitor

PA	State(s)	From Bus #	From Bus Name	To Bus #	To Bus Name	Ckt	Voltage (kV)	Line Length (miles)	Expected In- Service Year	Planning Status	Project Type	Project Description
PJM	PA	200005	CONEM-GH	200072	JACKMTN2	1	500		6/1/2013	Planned	Reliability	Build Jack's Mountain 500kV substation - Tap the Keystone - Juniata and Conemaugh - Juniata 500kV, connect the circuits with a breaker and half scheme, and install new 400 MVAR capacitor
РЈМ	PA	200072	JACKMTN2	200009	JUNIATA	1	500	-	6/1/2013	Planned	Reliability	Build Jack's Mountain 500kV substation - Tap the Keystone - Juniata and Conemaugh - Juniata 500kV, connect the circuits with a breaker and half scheme, and install new 400 MVAR capacitor
PJM	PA	200011	KEYSTONE	200071	JACKMTN1	1	500	-	6/1/2013	Planned	Reliability	Replace wave Irap and upgrade a bus section at Keystone 500kV - on the Keystone - New Jack's Mountain 500kV subil
PJM	PA	200011	KEYSTONE	200005	CONEM-GH	1	500		6/1/2012	Planned	Reliability	Replace wave trap at Keystone 500kV - on the Keystone - Conemaugh 500kV
PJM	PA	200005	CONEM-GH	200011	KEYSTONE	1	500		6/1/2012	Planned	Reliability	Replace wave trap and relay at Conemaugh 500kV - on the Conemaugh - Keystone 500kV
PJM	MD	200019	BURCHES	223994	BURCH230	2	500/230		6/1/2011	State/Budget Approval	Reliability	Burches Hill Substation - Add 2nd 1000 MVA 500/230kV
PJM	VA	314902	8CARSON	314928	8SULFOLK	1	500		6/1/2011	State/Budget Approval	Reliability	Build Carson-Suffolk 500 kV line
PJM	VA	314928	8SULFOLK	314537	6SUFFOLK	2	500/230		6/1/2011	State/Budget Approval	Reliability	Install second Suffolk 500/230 #2 transformer, build Suffolk-Fentress 230kV line
PJM	VA	314309	6IRON208	314338	6SOUWEST	1	230		6/1/2011	Planned	Reliability	Uprate/resag IronBridge-Walmsley-Southwest 230 kV
PJM	MD	235105	01DOUBS	235459	01DOUBS	2	500/230	-	6/1/2011	State/Budget Approval	Reliability	Replace Doubs 500/230 kV transformer #2
PJM	MD	235105	UIDOUBS	235459	OTDOUBS	3	500/230	-	6/1/2011	Planned	Reliability	Replace Doubs 500/230 kV transformer #3 Tunnel - Grays Ferry 230kV - Replace terminal
PJM	PA	213986	TUNNEL2	214074	GRAYSERY4	1	230		6/1/2011	Planned	Reliability	equipment 220-89 line
PJM	PA	213984	TUNNEL	213859	PARRISH9	1	230		5/27/2011	Planned	Reliability	Tunnel - Parrish 230kV - Replace terminal equipment 220-27 line
PJM	PA	213586	EDDYSTN3	213666	ISLANDR6	1	230		6/1/2011	State/Budget Approval	Reliability	Eddystone - Island Rd Upgrade line terminal equipment(CB # 235, three disconnect switches and two CTs) - new emergency rating of 1411 MVA, same immedance data
PJM	PA	214143	MASTER1	213819	N PHILA8	1	230		6/1/2011	Planned	Reliability	Reconductor Master - North Philadelphia 230kV line, new rating would be 757N/757E MVA ACSS
PJM	PA	213453	BUCKNGHM	218309	PLSNT VY	1	230	-	6/1/2011	Planned	Reliability	Reconductor Buckingham - Pleasant Valley 230kV; same impedance as existing line; ratings of 760MVA normal/882MVA emergency
PJM	LN	213453	BUCKNGHM	218309	PLSNT VY	1	230	-	6/1/2011	Planned	Reliability	Reconductor the PSEG portion of Buckingham - Pleasant Valley 230kV, replace wave trap and metering transformer
PJM	PA	213817	N PHILA	214010	WANEETA2	1	230		6/1/2013	Planned	Reliability	North Philadelphia - Waneeta 230kV reconductor same impedance as existing line; ratings of 760 MVA normal/882 MVA emergency
PJM	MD	223941	QUINC033	223937	DICK 230	1	230	-	6/1/2011	Planned	Reliability	Reconductor 230kV Quince Orchard to Dickerson circuits 33 & 35
PJM	MD	223942	QUINC035	223937	DICK 230	1	230		6/1/2011	Planned	Reliability	Reconductor 230kV Quince Orchard to Dickerson circuits 33 & 35
PJM	NJ	206262	READ-GTN	218350	BRANCHBG	1	230		6/1/2011	Planned	Reliability	Reconductor Readington (2555) - Branchburg (4962) 230kV circuit w/ 1590 ACSS
PJM	LN	218300	LINDEN	218343	TOSCO	1	230	-	6/1/2011	Planned	Reliability	Reconductor Linden (4996) - Tosco (5190) 230kV circuit w/ 1590 ACSS (Assumes operating at 220 degrees C)
PJM	IJ	218343	тоѕсо	218441	G22_MTX5	1	230		6/1/2011	Planned	Reliability	Reconductor Tosco (5190) - G22_MTX5 (90220) 230kV circuit w/ 1590 ACSS (Assumes operation at 220 degrees C)
PJM	NJ	216900	ATHENIA	217012	SADDLBRK	1	230		6/1/2012	Planned	Reliability	Reconductor Athenia (4954) - Saddle Brook (5020) 230kV circuit river section
PJM	NJ	206242	KITATINY	206260	NEWTON	1	230		6/1/2011	Proposed	Reliability	Reconductor the PSEG portion of Kittatinny - Newton 230kV circuit w/ 1590 ACSS
PJM	VA	314398	6NP NEWS	314522	6CHCKTUK	1	230		6/1/2012	Planned	Reliability	Reconductor 2.4 miles of Newport News - Chuckatuck 230kV
PJM	VA	314907	8DOOMS	314912	8LEXNGTN	1	500		6/1/2012	Planned	Reliability	Replace both wave traps on Dooms - Lexington 500kV
PJM	NJ	217149	LAWRENC4	218309	PLSNT VY	1	230		6/1/2012	State/Budget Approval	Reliability	Replace the wave traps at both Lawrence and Pleasant Valley on the Lawrence - Pleasant Valley 230kV circuit
PJM	NJ	217012	SADDLBRK	216900	ATHENIA	1	230		6/1/2012	Planned	Reliability	Increase the emergency rating of Saddle Brook - Athenia 230 kV by 25% by adding forced cooling
PJM	MD	220963	CONASTON	220964	GRACETON	2	230		6/1/2014	Planned	Reliability	Install a second Conastone - Graceton 230 kV circuit and replace Conastone 230 kV breaker 2323/2302
PJM	MD	200019	BURCHES	223994	BURCH230	3	500/230	-	6/1/2012	Planned	Reliability	Install third Burches Hill 500/230 kV transformer
PJM	PA	220963	CONASTON	208048	OTCR	1	230		6/1/2012	Proposed	Reliability	Conastone - Otter Creek 230 kV - Reconductor approximately 17.2 miles of 795 kcmil ACSR with new 795 kcmil ACSS operated at 160 deg C
PJM	MD	220963	CONASTON	208048	OTCR	1	230		6/1/2012	Proposed	Reliability	Conastone - Otter Creek 230 kV - Replace wavetrap and raise Operating temperature to 165 deg C
PJM	PA	253990	15CARSON	253983	15BRADY	1	345		6/1/2013	Planned	Reliability	New Underground Carson - Brady - Brunot Island 345 kV circuit
PJM	PA	253983	15BRADY	253975	15BI	1	345		6/1/2013	Planned	Reliability	New Underground Carson - Brady - Brunot Island 345
PJM	PA	214020	WARRNGT1	213642	HARTMAN	1	230		5/27/2011	State/Budget Approval	Reliability	Replace station cable at Hartman on the Warrington - Hartman 230 kV circuit
PJM	PA	213674	JARRETT2	213652	HEATON7	1	230		5/27/2011	Planned	Reliability	Jarrett - Heaton - Upgrade 230kV line terminal
PJM	MD	224017	RITCH059	224021	BENN 230	1	230		6/1/2012	Planned	Reliability	Two new 230 kV circuits between Ritchie - Benning Sta.
L	I			1		1			I			A

New or Upgraded Transmission	n Facilities in	EIPC 2020	Roll-Up Case

10		•
Includes ALL new/upgraded facilities	(161 kV and above) that are	projected to be in-service by 2020

	01-1-(-)	From Bus	E	T- D #			Voltage	Line	Expected In-	Diamaine Cistore	Desised Toma	
PA	State(s)	#	From Bus Name	To Bus #	To Bus Name	Ckt	(kV)	Length (miles)	Service Year	Planning Status	Project Type	Project Description
PJM	MD	224018	RITCH060	224021	BENN 230	1	230		6/1/2012	Planned	Reliability	Two new 230 kV circuits between Ritchie - Benning Sta.
PJM	PA	204508	N.TEMPLE	204875	NORTHKILL	1	230	-	6/1/2011	Proposed	Reliability	Construct a 230 kV Bernville station by tapping the North Temple-North Lebanon 230 kV line. Install a 230/69 kV transformer at existing Bernville 69 kV station.
PJM	PA	204875	NORTHKILL	204507	N.LEB	1	230		6/1/2011	Proposed	Reliability	Construct a 230 kV Bernville station by tapping the North Temple-North Lebanon 230 kV line. Install a 230/69 kV transformer at existing Bernville 69 kV station.
PJM	IL	270729	E FRA; R	270767	GOODI;1R	1	345	-	6/1/2013	Planned	Reliability	Reconductor East Frankfort - Goodings Grove 345 kV "Red"
PJM	LИ	218350	BRANCHBG	218337	FLAGTOWN	1	230		6/1/2012	Planned	Reliability	Branchburg - Flagtown - Reconductor circuit - upgrade 230kV with 2x1033 ACSS (4 mi)
PJM	LИ	218317	SOMRVLLE	218302	BRIDGWTR	1	230	-	6/1/2012	Planned	Reliability	Somerville - Bridgewater - upgrade 230kV with double 1033 ACSS conductor
PJM	MD	235175	01ELKO	235159	01CARB J	1	230	-	6/1/2013	Planned	Reliability	Rebuild Elko-Carbon Center Junction using 230 kV construction
PJM	MD	235488	01MONOCY	235516	01WALKER	1	230	-	6/1/2013	Planned	Reliability	Convert Monocacy - Walkersville 138 kV to 230 kV
PJM	MD	235516	01WALKER	235452	01CATOCT	1	230	-	6/1/2013	Planned	Reliability	Convert Walkersville - Catoctin 138 kV to 230 kV
PJM	MD	235506	01RINGLD	235452	01CATOCT	1	230		6/1/2013	Planned	Reliability	Convert Ringgold - Catoctin 138 kV to 230 kV
PJM	MD	235452	UICATUCI	235451	UTCARROL		230	•	6/1/2013	Planned	Reliability	Convert Catoctin - Carroll 138 kV to 230 kV
PJM	MD	235506	01RINGLD	-	-	· ·	230		6/1/2013	Planned	Reliability	
PIM	MD	235452	01CATOCT				230		6/1/2013	Planned	Reliability	Convert Catectin Substation from 138 kV to 230 kV
1.5101	IVID	233432	UTCATOCT		-		230	-	0/1/2013	T lanned	renability	Convert portion of Carroll Substation from 138 kV to 230
PJM	MD	235451	01CARROL		-	· ·	230	-	6/1/2013	Planned	Reliability	kV
PJM	MD	235488	01MONOCY				230		6/1/2013	Planned	Reliability	Convert Monocacy Substation from 138 kV to 230 kV
PJM	MD	235516	01WALKER				230		6/1/2013	Planned	Reliability	Convert Walkersville Substation from 138 kV to 230 kV
PJM	MD	235459	01DOUBS	235481	01LIMEKN	1	230	-	6/1/2013	Planned	Reliability	Reconductor Doubs - Lime Kiln (#207) 230kV
PJM	MD	235459	01DOUBS	235481	01LIMEKN	2	230		6/1/2013	Planned	Reliability	Reconductor Doubs - Lime Kiln (#231) 230kV
PJM	PA	207922	BRIS	208136	WSHO	1	230	-	6/1/2013	Planned	Reliability	Rebuild existing Brunner Island-West Shore 230 kV line
PJM	PA	207922	BRIS	208138	WSHO TR2	1	230		6/1/2013	Planned	Reliability	Rebuild existing Brunner Island-West Shore 230 kV line
PJM	MD	223941	QUINC033	223945	BML028	1	230		6/1/2012	Planned	Reliability	Upgrade terminal equipment on Quince Orchard - Bells
PIM	MD	223942		223946	BMI 030	1	230		6/1/2012	Planned	Reliability	Mill Road 028 & 030 230 kV lines Upgrade terminal equipment on Quince Orchard - Bells
1 5101		223742	20110033	223740	DIVIEGGO		230		0/1/2012	i idiined	rendbinty	Mill Road 028 & 030 230 kV lines
PJM	MD	223982	OAKGV230	224016	RITCH061	1	230	-	6/1/2013	Planned	Reliability	Upgrade Oak Grove - Ritchie 23061 230 kV line
PJM	MD	223982	OAKGV230	224015	RITCH058	1	230	-	6/1/2013	Planned	Reliability	Upgrade Oak Grove - Ritchie 23058 230 kV line
PJM	MD	223982	UAKGV230	224017	RITCH059	1	230	-	6/1/2013	Planned	Reliability	Upgrade Oak Grove - Ritchie 23059 230 kV line
PJW	WID	223902	UAKGVZ3U	224010	RITCH000	- 1	230		0/1/2013	Pidilileu	Reliability	Opyrade Oak Grove - Kitchie 23060 230 kV line
PJM	MD	232005	VIENNA	232008	LOR_230	1	230	-	6/1/2013	Planned	Reliability	Piney Grove to 230 kV, add 230/138 kV transformer to Loretto 230 kV
PJM	MD	232008	LOR_230	232007	PINEY GR	1	230	-	6/1/2013	Planned	Reliability	Piney Grove to 230 kV, add 230/138 kV transformer to Loretto 230 kV
PJM	VA	314388		314387		2	230		6/1/2011	Diagnod	Reliability	Build a parallel Unickanominy – Lanexa 230 kV line
PJM	VA	314423	OYUKKIWN	314189	OPAPERMILL		230	-	0/1/2012	Planned	Reliability	Build a new 230 kV line from Yorktown to Hayes
PJM	VA	314918	8NO ANNA	314911	8LDYSMTH	1	500	-	6/1/2013	Planned	Reliability	Replace wave traps on North Anna to Ladysmith 500 kV
PJM	PA	213440	BRADFRD2	213894	PLANBRK1	1	230		6/1/2013	Planned	Reliability	Bradford - Planebrook 230 kV Ckt.220-02: Reconductor the line to provide a normal rating of 677 MVA and an emergency rating of 827 MVA
PJM	PA	213436	BRADFR12	213898	PLANBRK3	1	230	-	6/1/2013	Planned	Reliability	Reconductor the Bradford – Planebrook 230 kV Ckt. 220- 31 to provide a normal rating of 677 MVA and emergency rating of 827 MVA
PJM	NJ	206242	KITATINY	206260	NEWTON	1	230		6/1/2012	Planned	Reliability	Kittatinny-Newton 230 kV: Increase operating
PIM	NI	217000	HUDSN1.6	217117	S WTRERP	1	230		6/1/2011	Planned	Reliability	Reconductor Hudson-South Waterfront 230 kV
PJM	MD	223961	BURT2314	220983	SANDY14T	1	230	-	6/1/2013	Planned	Reliability	Rebuild Burtonsville - Sandy Spring 230 kV circuits (2314 and 2334) (0.2 miles each) to increase rating to 968N/1227E MVA
PJM	MD	223962	BURT2334	220984	SANDY34T	1	230	-	6/1/2013	Planned	Reliability	Rebuild Burtonsville - Sandy Spring 230 kV circuits (2314 and 2334) (0.2 miles each) to increase rating to 968N/1227E MVA
PJM	MD	232005	VIENNA	232000	STEELE	1	230	-	6/1/2014	Planned	Reliability	Build a 2nd Vienna-Steele 230 kV line
PJM	PA	207999	JENK	208097	STAN TR3	1	230	-	6/1/2013	Planned	Reliability	Install a second 230 kV line between Jenkins and Stanton
PJM	VA	314171	6BRAMBL	314170	6COHMIL	2	230	-	6/1/2011	Planned	Reliability	Reconductor Brambleton - Cochran Mill 230 kV line with 201 Yukon conductor
PJM	MD	220964	GRACETON	221000	BAGLEY	1	230	-	6/1/2014	Planned	Reliability	Rebuild Graceton - Bagley 230 kV as double circuit line using 1590 ACSR. Terminate new line at Graceton with a new circuit breaker.
PJM	MD	220964	GRACETON	220999	BAGLEY2	1	230		6/1/2014	Planned	Reliability	Rebuild Graceton - Bagley 230 kV as double circuit line using 1590 ACSR. Terminate new line at Graceton with a new circuit breaker.
PJM	NJ	146752	SMAHWAH1	217063	WALDWICK	1	345	-	6/1/2011	Planned	Reliability	Reconductor South Mahwah - Waldwick 345 kV J-3410 circuit
PJM	NJ	146753	SMAHWAH2	217063	WALDWICK	1	345	-	6/1/2011	Planned	Reliability	Reconductor South Mahwah - Waldwick 345 kV K-3411 circuit
PJM	ОН	242938	05MARQUI	246888	05NFORK	1	345	-	6/1/2014	Planned	Reliability	Construct a new 345/138kV station on the Marquis-Bixby 345kV line near the intersection with Ross - Highland 69kV

ncludes ALL new/upgraded facilities	(161 kV and above) that are	e projected to be in-service by 2020

РА	State(s)	From Bus #	From Bus Name	To Bus #	To Bus Name	Ckt	Voltage (kV)	Line Length (miles)	Expected In- Service Year	Planning Status	Project Type	Project Description
PJM	ОН	246888	05NFORK	243454	05BIXBY	1	345		6/1/2014	Planned	Reliability	Construct a new 345/138kV station on the Marquis-Bixby 345kV line near the intersection with Ross - Highland 69kV
PJM	IL	270679	BYRON; R	270918	WEMPL; B	1	345	-	6/1/2014	Planned	Reliability	Change relay settings on Byron – Wempletown 345 kV to bring relay trip setting up to 115% of Rate C
PJM	VA	314918	8NO ANNA	314232	6NO ANNA	1	500/230		6/1/2014	Planned	Reliability	Replace existing North Anna 500-230kV transformer with larger unit
PJM	MD	224019	BUZZ NEW	224018	RITCH060	1	230		6/1/2014	Planned	Reliability	Convert the 138kV line from Buzzard 138-Ritchie 851 to a 230kV line and Remove 230/138kV Transformer at Ritchie and install a spare 230/138kV transformer at Buzzard Pt
PJM	MD	224013	BUZZ 016	224017	RITCH059	1	230	-	6/1/2014	Planned	Reliability	Upgrade the 230kV line from Buzzard 016 - Ritchie 059
PJM	PA	200005	CONEM-GH	200912	CONEMGH230	1	500/230		6/1/2014	Planned	Reliability	Upgrade Conemaugh 500/230 KV transformer and new line from Conemaugh-Seward 230 KV
PJM	PA	200912	CONEMGH230	200793	SEWARD 2	1	230	-	6/1/2014	Planned	Reliability	Upgrade Conemaugh 500/230 KV transformer and new line from Conemaugh-Seward 230 KV
PJM	MD	220980	RAPHAEL	220999	BAGLEY2	2	230		6/1/2015	Planned	Reliability	Build a second Raphael - Bagley 230 kV
PIM	OH	220960	02BEAVER	238654	02DAV-BE	2	345		6/1/2015	Planned	Reliability	Re-build the existing Raphael - Bagley 230 KV Build Beaver - Haves - Davis - Besse #2 345 kV line
PIM	011	238615		230034		1	345		6/1/2015	Planned	Poliability	Loop the Chamberlin - Mansfield 345 kV line into the
DIM		230013		230701		1	345		6/1/2015	Dianned	Poliability	Hanna 345 kV substation Loop the Chamberlin - Mansfield 345 kV line into the
DIM		230701		270900		1	245	-	6/1/2015	Planned	Poliability	Hanna 345 kV substation Upgrade both Garfield - Taylor 345 kV lines (17723 and
PJM	1L	270703		270099	TAYLO, R	1	340		0/1/2015	Planned	Deliability	17724) Upgrade both Garfield - Taylor 345 kV lines (17723 and
PJM	IL	2/0/62	GARFI; B	270898	TAYLU; B		345	-	6/1/2015	Planned	Reliability	17724)
PJM	VA	314749	6CHARLVL	314761	6HOLLY T	1	230		6/1/2014	Planned	Reliability	Loop the 2054 line in and out of Hollymeade and place a 230 kV breaker at Hollymeade. This creates two lines: Charlottesville - Hollymeade and Hollymeade - Gordonsville
PJM	VA	314761	6HOLLY T	314758	6GORDNVL	1	230		6/1/2014	Planned	Reliability	Loop the 2054 line in and out of Hollymeade and place a 230 kV breaker at Hollymeade. This creates two lines: Charlottesville - Hollymeade and Hollymeade - Gordonsville
PJM	NC	314647	6SHAWBRO	314632	6AYDLETT	1	230		6/1/2015	Planned	Reliability	Build a 230 kV line from Shawboro to Aydlett tap and connect Aydlett to the new line
PJM	NJ/PA	219125	CAMDEN	213922	RICHMOND	1	230		6/1/2015	Proposed	Reliability	Reconductor the Camden – Richmond 230 kV circuit (PECO portion) and upgrade terminal equipments at Richmond substations
PJM	NJ/PA	219125	CAMDEN	213922	RICHMOND	1	230		6/1/2015	Proposed	Reliability	Reconductor the Camden – Richmond 230 KV circuit (PSEG portion) and upgrade terminal equipments at Camden substations
PJM	PA	213922	RICHMOND	214012	WANEETA3	1	230		6/1/2015	Proposed	Reliability	terminal equipments at Richmond and Waneeta
PJM	OH	235108	01HATFLD	235774	01RONCO	1	500	-	5/1/2012	Proposed	Reliability	Hatfield - Ronco - Reconductor 500kV circuit
PJM	NJ	218311	SEWAREN	218341	WDBRDG O	1	230	-	3/10/2012	Proposed	Reliability	Sewaren - Woodbridge "O" - Reconductor Circuit - Upgrade 230kV line
PJM	NJ	206257	WHIPPANY	216950	ROSELAND	1	230	-	6/30/2012	Planned	Reliability	Whippany - Roseland - upgrade 230kV of JCPL side (rebuild circuit)
PJM	NJ	206286	ATLANTIC	206294	LARRABEE	1	230	-	6/30/2012	Planned	Reliability	Atlantic - Larrabee - upgrade 230kV reconductor circuit
PJM	VA	314918	8NO ANNA	314911	8LDYSMTH	1	500		9/18/2018	Planned	Reliability	North Anna - Ladysmith - New 15 mile 500kV line
PJM	DE	213750	LINWOOD	213490	CHICHST2	1	230		6/1/2011	Proposed	Reliability	upgrade substation equipment Linwood to Chichester 220-39 line.
PJM	DE	220964	GRACETON	221000	BAGLEY	1	230		6/1/2011	Proposed	Reliability	Graceton - Bagley - The line needs to be reconductored with 1,272 kcm rated at 125 deg. C. (SE becomes 699 MVA) The cost is approx. \$6M and 3 Years to complete
PJM	MD	235632	01KEMPTOWN	200004	CNASTONE	1	500	-	12/31/2010	Proposed	Reliability	Kemptown - Conastore - Replace 500kV Breaker Disconnects
PJM	PA	208009	LACK	200708	OXBOW	1	230	-	12/15/2011	Proposed	Reliability	Lackawanna - Oxbow - Rebuild approximately 16.33 miles of transmission line to support bundled conductor
PJM	PA	200708	OXBOW	200706	N.MESHPN	1	230		12/15/2011	Proposed	Reliability	Oxbow - N. Meshhoppen - Rebuild approximately 10.6 miles of transmission line to support bundled conductor, North Meshoppen Substation upgrade/replace two CT circuits and replace substation conductor
PJM	PA	200009	JUNIATA	208005	JUNI BU2	2	500/230		12/15/2011	Proposed	Reliability	Juniata - Replace 500/230kV transformer #2
PJM	NJ	206298	WILLIAMS	206292	FRENEAU	1	230		6/1/2013	Proposed	Reliability	Williams - Freneau Mitigation Upgrade, Drop Loop/Bus Conductor (Bundled)
PJM	NJ	206322	PARLIN	206298	WILLIAMS	1	230	-	6/1/2013	Proposed	Reliability	Parlin - Williams Mitigation Upgrade, Drop Loop/Bus Conductor (Bundled)
PJM	DE	232004	MILF_230	232000	STEELE	1	230	-	6/1/2014	Proposed	Reliability	Milford - Steele - Reconductor 230kV line
PJM	DE	232008	LOR_230	232007	PINEY GR	1	230	-	6/1/2011	Proposed	Reliability	Loretto - Piney Grove - Upgrade 9.51 miles of 477ACSR at 80 degrees C to 125 degrees C
PJM	ОН	242528	05SPORN	248005	06KYGER	1	345	-	5/31/2012	Proposed	Reliability	Sporn - Loop the Kyger Creek - Tristate line in an out of substation. Add 3-345kV circuit breakers, switches
PJM	ОН	248005	06KYGER	242529	05TRISTA	1	345	-	5/31/2012	Proposed	Reliability	Sporn - Loop the Kyger Creek - Tristate line in an out of
PJM	MD/PA	208048	OTCR	220963	CONASTON	1	230	-	12/31/2012	Proposed	Reliability	Diter Creek - Conastone - Reconductor the 12 mile 230kV circuit with 795 kcmil 30/19 ACSS conductor (PPL segment) and increase the line rating on the BGE composition 104 dograce
P.IM	DF	232004	MILF 230	232000	STEELE	1	230		1/31/2011	Planned	Reliability	Milford - Steele - Upgrade 230kV line
PJM	DE	232002	CEDAR CK	231004	RL_230	1	230		1/31/2011	Planned	Reliability	Cedar Creek - Red Lion - Reconductor the 230kV line

Includes ALL new/upgraded	facilities (161 kV and above)	that are projected to be	in-service by 2020

	ΡΑ	State(s)	From Bus #	From Bus Name	To Bus #	To Bus Name	Ckt	Voltage (kV)	Line Length (miles)	Expected In- Service Year	Planning Status	Project Type	Project Description
	PJM	VA	314037	6GAINSVL	314061	6LOUDOUN	1	230	-	6/1/2012	Proposed	Reliability	Gainesville - Loudoun - Reconductor 230kV line 2030 to 1200 MVA and convert 115kV line 124 to 230kV including 3 breakers and assoicated equipment
	PJM	VA	314037	6GAINSVL	314125	6VINTHIL	1	230	-	6/1/2012	Proposed	Reliability	Gainesville - Vint - Reconductor 230kV line
	PJM	DE	231001	EDGEMR 5	231000	CLAY_230	1	230		1/31/2011	Planned	Reliability	Edgemoor 5 - Claymont - Replace 7.1 miles of existing
	PJM	PA	235116	01YUKON	292625	T174_TAP	1	500	-	6/1/2011	Proposed	Reliability	Rhodes Lane - Construct new 500kV substation in a 3 breaker ring bus design adjacent to the existing Yukon- Browns Run (Hatfield) 500kV EHV circuit
	PJM	PA	292625	Т174_ТАР	235850	01BRNRUN	1	500	-	6/1/2011	Proposed	Reliability	Rhodes Lane - Construct a one span 2-2032 ACSR 500kV loop line from the existing Yukon-Browns Run (Hatfield) line at approx 2.8 miles from substation to new switching station
	PJM	PA	219125	CAMDEN	213922	RICHMOND	1	230	-	1/1/2013	Proposed	Reliability	Richmond - Camden 7 - Reconductor (PS portion) Position 42H at Camden 230kV bus section 2-6, disconnect switch 230BS2-6/2 - 831MVA and disconnect switch 230BS2-6/6 - 831 MVA
	PJM	PA	207922	BRIS	204515	YORKANA	1	230	-	1/1/2013	Proposed	Reliability	Brunner - Yorkana - Reconductor (PPL portion) approx. .64 miles of 1033 kcmil ACSR with 1590 kcmil ACCC
	PJM	PA	220963	CONASTON	208048	OTCR	1	230	-	1/1/2013	Proposed	Reliability	Ottercreek - Conastone - Install 3 prop poles to increase the line rating (BGE portion) for a conductor temperature to 140 degrees C gets 579 MVA (Summer emergency) with the existing wire
	PJM	PA	220963	CONASTON	208048	OTCR	1	230	-	1/1/2013	Proposed	Reliability	Ottercreek - Conastone - Reconductor appro. 12 miles of 795 kcmil 30/19 ACSR
	PJM	PA	213846	NOTTREAC	213869	РСНВТМТР	1	230	-	10/1/2012	Proposed	Reliability	Nottingham - Peach Bottom - Reconductor 14 miles of the 220-08 line (current emergency rating 627MVA)
	PJM	NJ	217000	HUDSN1-6	217079	ESSEX	1	230	-	6/1/2012	Proposed	Reliability	Husdon - Essex - Construct new 230kV circuit and add new terminations at each end
	PJM	VA	235707	01WYLIE R	239092	02SAMMIS	1	345	-	11/1/2010	Proposed	Reliability	terminal 345kV circuit
	PJM	IN	243218	05DESOTO	243233	05TANNER	2	345	-	12/31/2011	Planned	Reliability	Desoto - I anners Creek - Construct new switching station connecting to the 345kV line, including 3 345kV circuit breakers, relays, metering, SCADA and assoicated equipment
	PJM	IN	243218	05DESOTO	243233	05TANNER	1	345	-	12/31/2011	Planned	Reliability	Tanners Creek - Modify relay settings on the Desoto circuit
	PJM	NJ	228401	MCKLTON	219121	THOROFAR	1	230	-	6/1/2011	Proposed	Reliability	Mickelton - Thorofare (AE portion) - Reconductor 230kV line
	PJM	NJ	219121	THOROFAR	219109	DEPTFORD	1	230	-	6/1/2011	Proposed	Reliability	Mickelton - Thorofare - Deptford (PS portion) - Upgrade terminal equipment on the 230kV line
	PJM	NJ	228401	MCKLTON	228402	MONROE	1	230	-	6/1/2011	Proposed	Reliability	Mickelton - Monroe - Reconductor 230kV line #1
ŀ	РЈМ	UNJ	228401	MCKLION	228402		2	230	-	6/1/2011	Proposed	Reliability	Fagle Point -Gloucester - Upgrade terminal equipment
	PJM	NJ	219120	EAGLE PT	219110	GLOUCSTR	1	230	-	6/1/2011	Proposed	Reliability	on the 230kV line
	PJM	VA	314074	6POSSUM	314029	6DUMFRES	1	230	-	4/1/2016	Proposed	Reliability	Possum Point - Dumfres - Reconductor the 230kV line Occoguan - Ox - Reconductor the 230kV line and
	PJM	VA	314067		314068		1	230	-	4/1/2016	Proposed	Reliability	replace 1 in-line switch Possum Point - Lake Ridge - Reconductor 12 miles of
	PJM	VA	314074		314057	6LAKERD	1	230	-	4/30/2015	Dreposed	Reliability	the 230kV line Graceton - Cooper - Improve the line rating from 165 C
	PJM	UN .	220964	GRACETON	214089	COUPER		230	-	6/1/2011	Proposed	Reliability	to 180 C and remove sag limitation on the 230kV line Olive - Dequine - #2 circuit into the expanded Meadow
	PJM	IN	243229	050LIVE	243878	05MEADOW	1	345	-	11/1/2010	Proposed	Reliability	Lake switching station Olive - Dequine - #2 circuit into the expanded Meadow
	PJM	IN	243878	05MEADOW	243217	05DEQUIN	1	345	-	11/1/2010	Proposed	Reliability	Lake switching station
-	PJM	VA	314074	6POSSUM	314057	6LAKERD	1	230	-	6/30/2016	Proposed	Reliability	transmission line #237 (Possum Point to Lake Ridge)
	PJM	NJ	228401	MCKLTON	219121	THOROFAR	1	230	-	6/1/2011	Proposed	Reliability	(AE portion) line with a conductor that has a capability of at least 2500 A emergency
	PJM	NJ/NY	218300	LINDEN	126321	GOETHALS	1	230		6/1/2013	Proposed	Reliability	existing vacant bay at Linden
+	PJM		235111	01 502 J 8MT STM	314917	8MT STM 01WELTON S	1	500	-	6/1/2011	State/Budget Approval	Reliability	TRAIL Project
ŀ	PJM	PA/WV/VA	235637	01WELTON S	235037	01MDWBRK	1	500	-	6/1/2011	State/Budget Approval	Reliability	TRAIL Project
	PJM	PA/WV/VA	235110	01MDWBRK	314913	8LOUDOUN	1	500		6/1/2011	State/Budget Approval	Reliability	TRAIL Project
	PJM	MD/WV/VA	242508	05AMOS	235635	01WELTON S	1	765		6/1/2015	Planned	Reliability	PATH Project
$\left \right $	PJM	MD/WV/VA	235635	01WELTON S	235636		1	765/500	-	6/1/2015	Planned	Reliability	PATH Project
ŀ	PJM	MD/WV/VA	235636	01KEMPTOWN	235632	01KEMPTOWN	1	765/500		6/1/2015	Planned	Reliability	PATH Project
ŀ	PJM	MD/WV/VA	235636	01KEMPTOWN	235632	01KEMPTOWN	2	765/500	-	6/1/2015	Planned	Reliability	PATH Project
	PJM	MD/WV/VA	235632	01KEMPTOWN	200003	BRIGHTON	1	500	-	6/1/2015	Planned	Reliability	PATH Project
-	PJM	MD/WV/VA	235632		200003	BRIGHTON	2	500		6/1/2015	Planned	Reliability	PATH Project
ŀ	P IM	MD/W//VA	235632		235105	01DOUBS	1	500	-	6/1/2015	Planned	Reliability	PATH Project
ŀ	PJM	VA	314902	8CARSON	314928	8SULFOLK	1	500	-	6/1/2011	State/Budget Approval	Reliability	Carson - Suffolk 500 kV line
ĺ	PJM	NJ/PA	200022	SUSQHANA	200074	LACKAW	1	500	-	6/1/2012	State/Budget Approval	Reliability	Susquehanna - Roseland Project
	PJM	NJ/PA	200074	LACKAW	200098	LACKJEFF_T	1	500	-	6/1/2012	State/Budget Approval	Reliability	Susquehanna - Roseland Project
$\left \right $	P IM	NJ/PA	200098	LAUNJEFF_I	208009	LACK	2	500/230	-	6/1/2012	State/Budget Approval	Reliability	Susquenanna - Koseland Project
ŀ	PJM	NJ/PA	200098	LACKJEFF_T	200091	HOPATCONG	1	500	-	6/1/2012	State/Budget Approval	Reliability	Susquehanna - Roseland Project
ĺ	PJM	NJ/PA	200091	HOPATCONG	200094	ROSELD	1	500		6/1/2012	State/Budget Approval	Reliability	Susquehanna - Roseland Project
	PJM	MD/VA	314922	8POSSUM	200019	BURCHES	1	500	-	6/1/2017	Planned	Reliability	MAPP Project
ŀ	PJM PJM	MD/VA	200019	BURCHES	200019	CHALK PT	2	500	-	6/1/2017	Planned	Reliability	MAPP Project
1				provide the second s									

Includes ALL new/upgraded facilities	(161 kV and above) that are projected	to be in-service by 2020

PA	State(s)	From Bus #	From Bus Name	To Bus #	To Bus Name	Ckt	Voltage (kV)	Line Length (miles)	Expected In- Service Year	Planning Status	Project Type	Project Description	
PJM	MD/VA	200019	BURCHES	200018	CHALK PT	2	500	-	6/1/2017	Planned	Reliability	MAPP Project	
PJM	MD/VA	200018	CHALK PT	200020	CLVT CLF	1	500	-	6/1/2017	Planned	Reliability	MAPP Project	
PJM	MD/VA	200018	CHALK PT	200020	CLVT CLF	2	500	-	6/1/2017	Planned	Reliability	MAPP Project	
PJM	MD/VA	200150	VN_500	-	-	-	500	-	6/1/2017	Planned	Reliability	MAPP Project (Generator at bus to model HVDC line)	
PJM	MD/VA	200160	IR_500	· ·	•	•	500		6/1/2017	Planned	Reliability	MAPP Project (Generator at bus to model HVDC line)	
PJM	MD/VA	200020	CLVI CLF	-	·	-	500	-	6/1/2017	Planned	Reliability	MAPP Project (Loads at bus to model HVDC line)	
SCE&G	SC	3/0103	Pineland	370106	Denny Terrace	1	230	8	2011	State/Budget Approval	Reliability	Construct approximately 8 mi of 230kV	
SCE&G	SC	370201	Lake Murray	370210	Lake Murray	2	230/115	0	2011	State/Budget Approval	Reliability	Install a second 230/115kV autotransformer	
SCE&G	SC	370302	Graniteville	370320	Graniteville	3	230/115	0	2011	State/Budget Approval	Reliability	Install a third 230/115kV autotransformer	
SCE&G	SC	370013	Pepper Hill	3/050/	Summerville	1	230	8.19	2012	State/Budget Approval	Reliability	Construct approximately 8 mi of 230kV	
SCE&G	SC	3/040/	Yemassee	3/04/0	Yemassee	2	230/115	0	2012	State/Budget Approval	Reliability	Install a second 230/115kV autotransformer	
SCE&G	SC	370409	Ritter	370490	Ritter	1	230/115	0	2012	State/Budget Approval	Reliability	Construct a new 230/115kV substation	
SCE&G	SC	370013	Pepper Hill	370406	Canadys Church Creak	2	230	35	2013	State/Budget Approval	Reliability	Construct approximately 35 ml of 230kV	
SCE&G	SC	370013	Pepper Hill	370605	Спигсп Стеек	2	230	21.74	2013	State/Budget Approval	Reliability	Construct approximately 22 mi of 230kV	
SCE&G	SC	370201	Lake Murray	370205	Edenwood	2	230	14.09	2013	State/Budget Approval	Reliability	Construct approximately 14 ml of 230kV	
SCE&G	SC	370407	Vemassee	370470	Plentia	3	230/115	0	2013	State/Budget Approval	Reliability	Install a third 230/115KV autotransformer	
SCE&G	SC	370405	Okalle	370410	Okalle	1	230/115	0	2014	State/Budget Approval	Reliability	Construct a new 230/115kV substation	
SCEAG	<u> </u>	270012	VCS Sub 1	270105	Killion	1	230/113	20	2014	State/Budget Approval	Reliability	Construct approximately 29 mi of 220kV	
SCEAG	<u> </u>	270021	VCS Sub 2	270201	Nillidii	2	230	30	2015	State/Budget Approval	Poliability	Construct approximately 10 mi of 220kV	
SCEAG	<u> </u>	270104	Doppy Torrage	270140	Lake Wulldy	2	230	19	2015	State/Budget Approval	Reliability	Locinstruct approximately 19 mi of 230kV	
SCEAG	<u> </u>	270201	Denny rendce	270210	Lako Murray	2	230/115	0	2015	State/Budget Approval	Poliability	Install a third 220/115kV autotransformer	
SCERC	50	270201	Columbia Industrial Dark	270240	Columbia Industrial Park	2	230/115	0	2015	State/Budget Approval	Poliability	Install a second 220/115kV autotrapsformer	
SCE&G		370204	AM Williams	370240	Cainbox	2	230/113	0	2015	Dianod	Poliability	Construct approximately 0 mi of 220kV	
SCE&G	50 50	370302	Granitovillo	370306	Urgubart	2	230	17.76	2010	Planned	Poliability	Construct approximately 18 mi of 230kV	
SCE&G	SC SC	37002	VCS Sub 2	370404	St George	1	230	135	2010	State/Budget Approval	Reliability	Construct approximately 135 mi of 230kV	
SCE&G	SC SC	370021	VCS Sub 2	370404	St George	2	230	135	2018	State/Budget Approval	Reliability	Construct approximately 135 mi of 230kV	
SCE&G	SC	370404	St George	370404	Canadys	1	230	9.5	2018	State/Budget Approval	Reliability	Pohuild approximately 10 mi of 230kV	
SCE&G	SC SC	370404	St George	370507	Summerville	1	230	27.2	2018	State/Budget Approval	Reliability	Pehuild approximately 27 mi of 230kV	
SCPSA	SC.	311322	Arcadia	312766	Garden City	2	115	14.5	2010	Under Construction	Reliability	Arcadia-Garden City 115 kV Line #2	
3013/1		311322	Arcaula	312700	Garden eity	2	115	14.5	2011		rendbinty	Fold the existing Hemingway Marion 230 kV Line into	
SCPSA	SC	312712	Hemingway	311384	Lake City	1	230	19	2012	State/Budget Approval	Reliability	the Lake City 230-69 kV Substation	
												Fold the existing Hemingway Marion 230 kV Line into	
SCPSA	SC	312729	Marion	311384	Lake City	1	230	19	2012	State/Budget Approval	Reliability	the Lake City 230-60 kV Substation	
SCDSA	SC	311688	Carolina Eorost	312813	Carolina Forest		230/115		2012	State/Budget Approval	Poliability	Carolina Forest 230-115 kV Sub	
SCPSA	<u> </u>	212012	Carolina Forest	212764	Dunos	2	115	4	2012	State/Budget Approval	Poliability	Carolina Forest Dunos 115 kV Lino #2	
SCPSA	SC SC	311627	Orangeburg	311628	Orangeburg	2	230/115		2012	State/Budget Approval	Poliability	Orangeburg 230,115 kV Sub	
SCPSA	SC SC	3116127	Pomaria	312003	Domaria		230/113		2012	Dianned	Reliability	Pomaria 230-60 kV Sub	
SCPSA	SC	311382	Winnshoro	311059	Winnshoro		230/69		2012	Planned	Reliability	Winnshoro 230-69 kV Sub	
SCPSA	SC	370012	VC Summer	311382	Winnsboro	1	230	14	2013	Planned	Reliability	VC Summer-Winnsboro 230 kV Line	
SCPSA	SC	311654	Richburg	311399	Richburg		230/69		2014	Planned	Reliability	Richburg 230-69 kV Sub	
SCPSA	SC	311382	Winnsboro	311654	Richburg	1	230	26.3	2014	Planned	Reliability	Winnsboro-Richburg 230 kV Line	
SCPSA	SC	370012	VC Summer	311612	Pomaria	2	230	6.93	2014	Planned	Reliability	VC Summer-Pomaria 230 kV Line #2	
SCPSA	SC	311716	Bucksville	311717	Bucksville		230/115		2015	Planned	Reliability	Bucksville 230-115 kV Sub	
SCPSA	SC	311654	Richburg	312732	Flat Creek	1	230	32.45	2015	Planned	Reliability	Richburg-Flat Creek 230 kV Line	
SCPSA	SC	312719	Winvah	311716	Bucksville	1	230	32.5	2016	Planned	Reliability	Winvah-Bucksville 230 kV Line	
SCPSA	SC	311612	Pomaria	312737	Sandy Run	1	230	58	2016	Planned	Reliability	Pomaria-Sandy Run 230 kV Line	
SCPSA	SC	312737	Sandy Run	311330	Sandy Run		230/115		2016	Planned	Reliability	Sandy Run 230-115 kV Sub	
SCPSA	SC	311717	Bucksville	312766	Garden City	1	115	15	2017	Planned	Reliability	Bucksville-Garden City 115 kV Line	
SCPSA	SC	312737	Sandy Run	311627	Orangeburg	1	230	33.2	2017	Planned	Reliability	Sandy Run-Orangeburg 230 kV Line	
SCPSA	SC	311673	Wassamassaw	311674	Wassamassaw		230/115		2017	Planned	Reliability	Wassamassaw 230-115 kV Sub	
SCPSA	SC	312728	St. George	311393	St. George		230/115		2018	Planned	Reliability	St. George 230-115 kV Substation	
SCPSA	SC	311627	Orangeburg	312728	St. George	1	230	29.07	2018	Planned	Reliability	Orangeburg-St. George 230 kV Line	
SCPSA	SC	312710	Cross	311673	Wassamassaw	2	230	18.3	2018	Planned	Reliability	Cross-Wassamassaw 230 kV Line	
SCPSA	SC	312728	St. George	312718	Varnville	1	230	41.1	2019	Planned	Reliability	St. George-Varnville 230 kV Line	
SCPSA	SC	312718	Varnville	312840	Varnville		230/115		2019	Planned	Reliability	Construct a new Varnville 230-115 kV Sub	
SOCO	AL	385180	N.OPEL6	385310	HILLABEE	1	230	37.6	2011	State/Budget Approval	Reliability	Upgrade approximately 37.6 mi of 230 kV line to 110 C	
SOCO	AL	384215	HOLT 6	385182	TUSC6	1	230	6.9	2011	State/Budget Approval	Reliability	Construct approximately 6.9 mi of 230 kV line	
SOCO	MS	388460	CARIERSW 230.00	388461	CARIERSW 115.00	1	230/115		2011	State/Budget Approval	Reliability	Construct a new 230/115 kV substation	
SOCO	MS	388460	CARIERSW 230.00	388400	KILN 230.00	1	230	26.4	2011	State/Budget Approval	Reliability	Construct approximately 26.4 mi of 230 kV line	
SOCO	GA	380100	E SOCIAL CIR	382370	R_ESC B-ESC	1	230		2011	State/Budget Approval	Reliability	Install a 2% reactor at East Social Circle	
SOCO	GA	380100	E SOCIAL CIR	382326	R_EAT SW E-E	1	230		2011	State/Budget Approval	Reliability	Install a 2% reactor at East Social Circle	
SOCO	GA	389001	MCINTOSH 230.00	389003	KRAFT 230.00	1	230	16.3	2012	State/Budget Approval	Reliability	Rebuild approximately 16 mi of 230 kV lines	
SOCO	GA	389001	MCINTOSH 230.00	389003	KRAFT 230.00	2	230	16.3	2012	State/Budget Approval	Reliability	Rebuild approximately 16 mi of 230 kV lines	
5000	AL	384965	DANWAYSS	385310	HILLABEE	1	230	32.05	2012	State/Budget Approval	Reliability	Upgrade approximately 32 mi of 230 kV line to 110 C	
SOCO	AL	384508	MONIG SS	384513	S MONIG6	1	230	7.7	2012	State/Budget Approval	Reliability	Reconductor approximately 7.7 mi of 230 kV line	
SOCO	GA	389001	MCINTOSH 230.00	389155	BLANDFORD 230	1	230	8.6	2013	State/Budget Approval	Reliability	Reconductor approximately 18.2 mi of 230 kV line	
5000	GA	389155	BLANDFORD 230	389044	MELDRIM 230	2	230	9.6	2013	State/Budget Approval	Reliability	Reconductor approximately 18.2 mi of 230 kV line	
SUCU	AL	384471	GREENCU6 230.00	384470	GREENCO3 115.00	2	230/115		2013	State/Budget Approval	Reliability	Install a new 230/115 kV transformer	
SUCO	AL	385178	AUTAUSS8 500.00	385500	AUTAUG6 230.00	1	500/230		2013	State/Budget Approval	Reliability	Install a new 500/230 kV transformer	
SUCU	MS	388000	MDN NE 230.00	388001	IVIDIN NE 115.00	1	230/115		2013	State/Budget Approval	Reliability	Replace the 230/115 KV transformer	
5000	MS	388000	MDN NE 230.00	388001	MUNINE 115.00	2	230/115	14.0	2013	State/Budget Approval	Reliability	Replace the 230/115 kV transformer	
5000	FL FL	38//65	LAGUNA B 230.00	38/836	L SWITH	1	230	14.2	2013	State/Budget Approval	Reliability	Reconductor approximately 14.2 mi of 230 kV line	
5000	FL CA	38//65	LAGUNA B 230.00	38//66	LAGUNA B 115.00	2	230/115		2013	State/Budget Approval	Reliability	Install a new 230/115 kV transformer	
5000	GA	200175		20014/	DEAN FOREST	1	230/113		2014	State/Dudget Approval	Reliability	Debuild approximately	
3000	GA	204112	DOULE VARD Z	307140	DLAN FURES	1			2014	Sidle/Duuget ApproVal	RelidDility	Tan the Kraft-Mointosh 230 kV line with new 220 kV	
SOCO	GA	389001	MCINTOSH 230.00	389176	GS-W	1	230	14.3	2014	State/Budget Approval	Reliability	Tap the Kraft-McIntosh 230 kV line with new 230 kV	
												Istation Tap the Kraft-McIntosh 230 kV line with new 230 kV	
SOCO	GA	389176	GS-W	389003	KRAFT 230.00	1	230	2	2014	State/Budget Approval	Reliability	ity station	
5000	GA	389146	DEAN FOREST	389176	GS-W	1	230	5	2014	State/Budget Annroval	Reliability	ility Build approximately 5 mi of new 230 kV line	
5000	GA	389146	DEAN FOREST	389003	KRAFT 230.00	1	230	57	2014	State/Budget Approval	Reliability	Rebuild approximately 5 7 mi of 230 kV line	
5000	AI	384400	GASTON	380179	ROOPVILLE	1	230	72	2014	State/Budget Approval	Reliability	Upgrade approximately 72 mi of 230 kV line	
SOCO	AI	385235	E PELHAM6	384400	GASTON	1	230	11.97	2014	State/Budget Approval	Reliability	Upgrade approximately 11.97 mi of 230 kV line	
SOCO	AL	385897	CO LINE6 230.00	385898	CO LINE3 115.00	2	230/115		2014	State/Budget Approval	Reliability	lity Install a 230/115 kV transformer	
SOCO	AL	384511	SNOWDN6	385138	PIKE CO6	1	230	32.3	2014	State/Budget Approval	Reliability	y Reconductor approximately 32.3 mi of 230 kV line	
SOCO	MS	388008	KEMPER	388006	MDN EAST	1	230	18	2014	State/Budget Approval	Reliability	Construct approximately 18 mi of new 230 kV line	

PA	State(s)	From Bus #	From Bus Name	To Bus #	To Bus Name	Ckt	Voltage (kV)	Line Length (miles)	Expected In- Service Year	Planning Status	Project Type	Project Description
SOCO	MS	388008	KEMPER	388007	MDN WEST	1	230	18	2014	State/Budget Approval	Reliability	Construct approximately 18 mi of new 230 kV line
SOCO	MS	388006	MDN EAST	384471	GREENCO6	1	230	52.72	2014	State/Budget Approval	Reliability	230 kV line
SOCO	MS	388006	MDN EAST	388000	MDN NE	1	230	4.28	2014	State/Budget Approval	Reliability	Construct new 230 kV Sw St along Green Co - MDN NE 230 kV line
SOCO	MS	388007	MDN WEST	388000	MDN NE	1	230	4.02	2014	State/Budget Approval	Reliability	Construct new 230 kV Sw St along Enterprise - MDN NE 230 kV line
SOCO	MS	388007	MDN WEST	388072	ENTPRISE	1	230	24	2014	State/Budget Approval	Reliability	Construct new 230 kV Sw St along Enterprise - MDN NE 230 kV line
SOCO	MS	388036	VIMVILLE	388035	VIMVL TP	1	230/115		2014	State/Budget Approval	Reliability	Construct a new 230/115 kV Substation
SOCO	MS	388006	MDN EAST	388036	VIMVILLE	1	230	6	2014	State/Budget Approval	Reliability	Construct approximately 6 mi of new 230 kV line
SOCO	MS	388036	VIMVILLE	388065	SWEATT	1	230	14	2014	State/Budget Approval	Reliability	Construct approximately 14 mi of new 230 kV line
SOCO	GA	380317	ROCKVILLE 500.00	380018	SCHERER	1	500	54	2015	State/Budget Approval	Reliability	Construct new 500 kV Sw St along Scherer-Warthen 500 kV line
SOCO	GA	380317	ROCKVILLE 500.00	383052	WARTHEN	1	500	24.5	2015	State/Budget Approval	Reliability	Construct new 500 kV Sw St along Scherer-Warthen 500 kV line
SOCO	GA	380017	E WALTON 500.00	382098	E WALTON 230.00	1	500/230		2015	State/Budget Approval	Reliability	Construct a new 500/230/115 kV Substation
SOCO	GA	380317	ROCKVILLE 500.00	380017	E WALTON 500.00	1	500	46.6	2015	State/Budget Approval	Reliability	Construct approximately 46.6 mi of new 500 kV line
SOCO	GA	382098	E WALTON 230.00	382055	BETHABARA	1	230	13.3	2015	State/Budget Approval	Reliability	Construct with 1351 ACSS at 200°C
SOCO	GA	382098	E WALTON 230.00	382059	BOSTWICK	1	230	5.45	2015	State/Budget Approval	Reliability	Construct with 1351 ACSS at 200°C
SOCO	GA	382098	E WALTON 230.00	382799	JACKS CREEK	1	230	13	2015	State/Budget Approval	Reliability	Construct with 1351 ACSS at 200°C
SOCO	GA	380065	NORCROSS	380056	BERKELEY LAKE	1	230	3.5	2015	State/Budget Approval	Reliability	Reconductor approximately 3.5 mi of 230 kV line
SOCO	GA	380086	CUMMING	381977	SHARON SP 230.00	1	230	6.6	2015	State/Budget Approval	Reliability	Construct approximately 6.6 mi of new 230 kV line
SOCO	FL	387776	S ROSA 230.00	387775	SNT ROSA 115.00	1	230/115		2015	State/Budget Approval	Reliability	Construct a new 230/115 Substation
SOCO	FL	387776	S ROSA 230.00	387775	SNT ROSA 115.00	2	230/115		2015	State/Budget Approval	Reliability	Construct a new 230/115 Substation
SOCO	FL	387776	S ROSA 230.00	387765	LAGUNA B 115.00	1	230	21.35	2015	State/Budget Approval	Reliability	Construct a new 230/115 Substation
SOCO	FL	387776	S ROSA 230.00	387765	LAGUNA B 115.00	2	230	21.35	2015	State/Budget Approval	Reliability	Construct a new 230/115 Substation
SOCO	GA	380147	BRANCH	380172	W MILLEDGVL	1	230	6.23	2016	Planned	Reliability	Bundle approximately 6.23 mi of 230 kV line
SOCO	GA	382224	CORN CRIB 230.00	382225	CORN CRIB 115.00	1	230/115		2016	Planned	Reliability	Construct a new 230/115 kV substation
SOCO	GA	382224	CORN CRIB	380123	YATES	1	230	14.8	2016	Planned	Reliability	Loop in the existing 230 kV line into new substation
SOCO	GA	382224	CORN CRIB	380169	THOMASTON	1	230	40.5	2016	Planned	Reliability	Loop in the existing 230 kV line into new substation
SOCO	GA	380148	GORDON	380156	N DUBLIN	1	230	32	2016	Planned	Reliability	Construct approximately 32 mi of new 230 kV line
5000	GA	383070	APPLING BIO	380224	OFFERMAN	1	230	27.1	2016	Planned	Reliability	Reconductor approximately 27.1 mi of 230 kV line
5000	GA	303070	HWV 54	381036	HWV 54	1	230/115	27.1	2016	Planned	Poliability	Construct a new 230/115 kV substation
5000	GA	201210		200026		1	230/113	0.1	2016	Diannod	Poliability	Loop in the existing 220 kV line into new substation
5000	GA	381216	HWY 54	380174	NEW HODE	1	230	7.13	2016	Planned	Poliability	Loop in the existing 230 kV line into new substation
5000	GA	200000		200005	WINDER	1	230	15.3	2016	Diannod	Poliability	Pobuild approximately 15.2 mi of existing 220 kV line
5000	GA	380040	POSWELL 230.00	380048		1	230	15.5	2010	Planned	Poliability	Construct approximately 4.5 mi of new 230 kV line
5000	GA	200040	ROSWELL 220.00	200222	POSWELL	1	230/115	4.5	2010	Diannod	Poliability	Install a 220/115 kV transformor
5000	GA	200140	S MACON 220.00	200322	S MACON 11E 00	1	230/115		2010	Planned	Deliability	Deplace the existing 220/115 kV transformers
5000	GA	200147	S MACON 230.00	200747	S MACON 115.00	2	230/115		2010	Dianned	Doliability	Deplace the existing 220/115 kV transformers
SOCO	GA	380008	VOGTLE	381490	THOMSON	1	500	50	2016	State/Budget Approval	Reliability	Construct approximately 50 mi of new 500 kV
SOCO	AL	384638	CHICK 6	384700	BARRY 6	1	230	18.43	2016	Planned	Reliability	Reconductor approximately 18.4 mi of 230 kV line
SOCO	AL	385425	S.DUNVL6 230.00	385426	S.DUNVL3	1	230/115	11.00	2016	Planned	Reliability	Install a 230/115 kV transformer
SOCO	GA	382059	BOSTWICK	380122	E WATKNSV 2	1	230	11.38	2017	Planned	Reliability	Reconductor existing line with 1351 ACSS at 170°C
SOCO	GA	380095	WINDER P 230.00	382021	CLARKSBORO 230.00	1	230	14	2017	Planned	Reliability	Reconductor approximately 14.0 mi of 230 kV line
SOCO	GA	382751	CORNELIA 230.00	380407	CORNELIA 115.00	1	230/115		2017	Planned	Reliability	Install a 230/115 kV transformer
SOCO	GA	382751	CORNELIA 230.00	380091	MIDDLE FORK 230.00	1	230	10	2017	Planned	Reliability	Build approximately 10 mi of new 230 kV line
SOCO	GA	380165	W BRUNSWICK 230.00	382152	DORCHESTER 230.00	1	230	45	2017	Planned	Reliability	Build approximately 45 mi of new 230 kV line
SOCO	GA	382152	DORCHESTER 230.00	382140	DORCHESTER 115.00	2	230/115		2017	State/Budget Approval	Reliability	Install a 230/115 kV transformer
SOCO	GA	382152	DORCHESTER 230.00	389051	LT OGEECHEE 230.00	1	230	21.9	2017	Planned	Reliability	Reconductor approximately 21.9 mi of 230 kV line
SOCO	GA	382470	E CARROLTON 230.00	382471	E CARROLTON 115.00	1	230/115	E 2	2017	Planned	Reliability	Construct a new 230/115 kV substation Construct a new 230/115 kV substation and loop in 230
3000	GA	382470	E CARROLTON 230.00	382409			230	0.0	2017	Planned	Reliability	kV line Construct a new 230/115 kV substation and loop in 230
\$0C0	GA	382470	E CARROLTON 230.00	382480	YELLOW DIRT	1	230	14.1	2017	Planned	Reliability	kV line
5000	CA CA	38033%	DEEEDWAN 220.00	300209	DEFERMAN 115 00	2	230/115	11.7	2017	Diappod	Poliability	Install a 230/115 kV transformer
5000	CA CA	201201	ST ERMAN 230.00	301093	STERMAN 113.00	1	230/113	20	2017	Plannod	Poliability	Construct approximately 20 mi of new 2201/Uline
5000	CA CA	301301	0HARA 230.00	202030	MCDONOLICH 220.00	1	230	20	2017	Plannod	Poliability	Pehuild evisting 115 kV to create new 220 kV circuit
5000	CA CA	201022		200740		1	230	20	2017	Plannad	Deliability	Install a pow 220/115 kV transformer
5000	CA GA	200147		201115		1	230/113	11 1	2017	Planned	Reliability	Install a 19W 230/113 KV transformer
5000	CA CA	202225	DIVANION 230.00	202054	ENTONTONIO	1	230	0	2010	Plannad	Deliability	Install a 2% reactor at 220 kV substall011
5000	GA CA	382325	K_EATU B-E3 230.00	382054	CAINSVI #2.1.115.00	1	230	U	2018	Planned	Reliability	Deplace the existing 220/115 b) (transformer
5000	GA	300007	MCINTOSU 220.00	3000001	GAINSVL#2-1 115.00	1	230/115		2018	Planned	Reliability	Deplace the existing 230/115 kV transformer
3000	GA	389001	INCINTUSH 230.00	389021	MCINTUSH 115.00	1	230/113	2.0	2010	Planned	Reliability	Replace the existing 230/115 KV transformer
5000	GA	380056	DERKELEY LK 230.00	381232	SCOTTON 5 115 CC	1	230	3.9	2018	Planned	Reliability	Reconductor approximately 3.9 mi of 230 kV line
SUCU	GA	380066	SCUTIDALE 230.00	380357	SCUTIDALE 115.00	2	230/115	1.1.5	2018	Planned	Reliability	Install a new 230/115 kV transformer
5000	GA	381301	SUWANEE 230.00	3819//	SHARUN SP 230.00	1	230	14.5	2018	Planned	Reliability	Construct approximately 14.5 ml of new 230 kV line
SUCU	GA	380033	ADAMSVILLE	380034	BAKEKS FKY	1	230	1.6	2019	Planned	Reliability	Reconductor approximately 1.6 mi of 230 kV line
SUCO	GA	380171	UHARA 230.00	381912	JUNESBURU 230.00	1	230	8.9	2019	Planned	Reliability	Reconductor approximately 8.9 mi of 230 kV line
5000	GA	380117	WAYNESBORO 230.00	380562	WAYNESBORO 115.00	1	230/115		2019	Planned	Reliability	Replace the existing 230/115 kV transformer
SUCO	GA	382181	K_WMCINTSH1 230.00	381421	W MCINTOSH1 230.00	1	230	0	2019	Planned	Reliability	Install a 1% reactor on the 230 kV line
SOCO	GA	382181	K_WMCINTSH1 230.00	389001	MCINTOSH 230.00	1	230	0.43	2019	Planned	Reliability	Install a 1% reactor on the 230 kV line
SOCO	GA	382182	K_WMCIN1SH2 230.00	381424	W MCINTOSH2 230.00	1	230	0	2019	Planned	Reliability	Install a 1% reactor on the 230 kV line
SOCO	GA	382182	R_WMCINTSH2 230.00	389001	MCINTOSH 230.00	1	230	0.37	2019	Planned	Reliability	Install a 1% reactor on the 230 kV line
SOCO	AL	385180	N.UPEL6 230.00	385181	N.OPEL3 115.00	2	230/115	10 -	2019	Planned	Reliability	Install a 230/115 kV transformer
5000	AL	384700	BARRY SP	387060	CRIST SP	1	230	61.5	2019	Planned	Reliability	Upgrade approximately 61.5 mi of 230 kV line
SOCO	GA	380011	S HALL 500.00	380017	E WALTON 500.00	1	500	35	2020	Planned	Reliability	Construct approximately 35 mi of new 500 kV transmission line
SOCO SOCO	GA	381977 380337	SHARON SP 230.00 BAY CREEK	382084 381937	SHARON SP 115.00 BAY CREEK	1	230/115		2015	State/Budget Approval Planned	Reliability Reliability	Install a 230/115 kV transformer Install a second 230/115 kV transformer
	0.1								2010	. Idiniou		Install 22 miles of new 345 kV, 2-954 ACSR line (Flint
SPP	AR	506935	FLINT CREEK	90002	OSAGE CREEK		345	63	6/1/2016	Planned	Reliability	Creek to Shipe Road). Install 9 miles of 345 kV line from Shipe Road to East Rogers. Install 32 miles of 345 kV line from East Rogers to Osago Creek

PA	State(s)	From Bus #	From Bus Name	To Bus #	To Bus Name	Ckt	Voltage (kV)	Line Length (miles)	Expected In- Service Year	Planning Status	Project Type	Project Description
SPP	NM/TX	527896	HOBBS	527916	MIDLAND		345	89	2012	Planned	Reliability	Convert existing 89.22 mile Hobbs - Midland 230 kV line to operate at 345 kV.
SPP	МО	542982	IATAN	542980	NASHUA	1	345	30	2015	Planned	Economic	Tap Nashua 345kV bus in Hawthorn - St. Joseph 345 kV line. Build new 345 kV line from latan to Nashua.
SPP	KS/NEB	530583	KNOLL	640065	AXTELL		345	125	2013	Planned	Economic	Build new 345 kV line from Knoll to interception point of Axtell to Knoll line. Updated mileage for filed route; reactor added at Post Rock (55 Mvar)
SPP	TX/AR	508072	NW TEXARKANA	507455	TURK	1	345	33	2012	Planned	TS	Build approximately 33 miles of 2-954 ACSR from Turk to NW Texarkana.
SPP	KS	532771	RENO CO	532773	SUMMIT	1	345	51	2010	Planned	Economic	Install new 50.55-mile 345 kV line from Reno county to Summit; Substation work required at Summit for new 345 kV terminal
SPP	KS/OK	532794	ROSE HILL	514803	SOONER	1	345	53	2012	Planned	Reliability	New 345 kV line from Sooner to Oklahoma/Kansas Stateline or the interface with the Westar Energy line segment to achieve 3000 amp or greater emergency rating.
SPP	OK	515045	SEMINOLE	515224	MUSKOGEE	1	345	100	2013	Planned	Economic	Build new 345 kV line from Seminole to Muskogee
SPP	KS	531469	SPEARVILLE	530583	KNOLL	1	345	90	2012	Planned	Economic	Build new 345 kV line from Knoll to interception point of Spearville to Knoll line. Updated for approved route mileage; reflect addition of reactor at Post Rock (35 Mvar)
SPP	TX	521157	HUGO	510911	VALLIANT	1	345	19	2012	Planned	TS	Install 345 kV terminal equipment at Valliant Substation
SPP	TX/OK	525832	TUCO	523775	WOODWARD	1	345	1/8	2014	Planned	Economic	New 345kV line from Woodward EHV to SPS Tuco
SPP	KS	532861	EAST MANHATTAN	532862	MCDOWELL		230	15.65	2012	Planned	Reliability	W line but is operated at 115 kV is but as a 230 kV line but is operated at 115 kV. Substation work will have to be performed in order to convert this line to 230 kV operation.
SPP	ТХ	524365	RANDALL CO.	524415	AMARILLO S.	1	230	20	2014	Planned	Reliability	Build new 20 mile Randall Co - Amarillo South 230 kV line. Install second 230/115 kV transformer in Randall substation.
SPP	ТХ	526338	JONES	526677	GRASSLAND	2	230	18	2013	Planned	Reliability	Build new second Jones - Grassland 230 kV line, first one built 345 kV
SPP	NM	524875	OASIS	524897	PLEASANT HILL	1	230	16	2012	Planned	Reliability	Build new 16 mile Frio - Draw - Oasis 230 kV line. New 230/115 kV transformer at Frio - Draw substation.
SPP	NM	524897	PLEASANT HILL	524909	ROOSEVELT	1	230	26	2012	Planned	Reliability	Build new 26 mile Frio - Draw - Roosevelt County 230 kV line.
SPP	ТХ	525461	NEWHART	525213	SWISHER CO.	1	230	19	2015	Planned	Reliability	New 19 mile Swisher County Interchange - Newhart 230 kV line to new Newhart substation with 230/115 kV, 150/173 MVA transformer
SPP	ТХ	523095	HITCHLAND	523309	MOORE CO.	1	230	50	2011	Planned	Reliability	Build new 50 mile Moore County - Hitchland 230 kV rated at 541 MVA.
SPP	TX	523095	HITCHLAND	523155	OCHILTREE	1	230	35	2012	Planned	Reliability	Add 230 kV line from Hitchland to Ochilltree - 541 MVA.
SPP	OGE	515355	Igo 161 kV	515357	Razorback 161 kV	1	161	9.5	2011	Planned	PL	Conversion from 69kV to 161kV.
SPP	OGE	515358	Short Mountain 161 kV	515316	Branch 161 kV	1	161	10.77	2011	Planned	PL	Conversion from 69kV to 161kV.
SPP	OGE	515352		503902	Fitzbuch 161 kV	1	161	4.72	2011	Planned	PL PI	Conversion from 69kV to 161kV
SPP	OGE	515332	Little Spadra 161 kV	515355	lao 161 kV	1	161	6.93	2011	Planned	PL	Conversion from 69kV to 161kV.
SPP	OGE	515353	Great Lakes Carbon 161 kV	515352	Altus 161 kV	1	161	1.81	2011	Planned	PL	Conversion from 69kV to 161kV
SPP	OGE	515354	Noark 161 kV	515353	Great Lakes Carbon 161 kV	1	161	1.74	2011	Planned	PL	Conversion from 69kV to 161kV
SPP	GRDA	512714	Kansas Tap 161 kV	512642	W Siloam Springs 161 kV	1	161	8.8	2015	Planned	R2	Reconductor line to 347MVA
SPP	GRDA	512642	W Siloam Springs 161 kV	512643	Siloam City 161 kV	1	161	4.2	2015	Planned	R2	Reconductor line to 347MVA
SPP	KCPL	543069	Paola 161 kV	543129	Middle Creek 161 kV	1	161	10.35	2013	Planned	PL	New Middle Creek sub and Paola-Middle Creek 161kV line
SPP	KCPL	543058	North Louisburg 161 kV	543129	Middle Creek 161 kV	1	161	3.65	2013	Planned	PL	New North Louisburg-Middle Creek 161kV line
SPP	KCPL	543054	Cedar Niles 161 kV	543131	Clare 161 kV	1	161	4.84	2012	Planned	PL	New Cedar Niles-Clare 161 kV Line & Clare substation
SPP	GMO	541346	Ritchfield 161 kV	541202	Sibley 161kV	1	161	1/71	2010	Planned	PL	161kV Tap of Hallmark to Sibley
SPP	GMU	541215	Hallmark 161kV	541346	Ritchfield 161 kV		101	16./1	2010	Planned	PL	161kV Tap of Hallmark to Sibley
SPP	KCPL	543030	Waldron 161 kV	540000	Wayborby 161 kV	1	161	62	2013	Planned	PL DI	New Waldron sub cut-in
	KOLE	343030		343017	Wednerby for KV	· ·	101	0.2	2013	riannea	16	Reconductor 2.2 miles of Fort Smith - Colony 161 kV line
SPP	OGE	515300	Fort Smith 161 kV	515345	Colony 161 kV	1	161	2.2	2013	Planned	Reliability	to 1590 kcmil ACSR and change terminal equipment at Ft. Smith and Colony substations to 2000A.
SPP	KCPL	543130	Sunflower	542966	West Gardner	1	161		2013	Planned	PL	New Sunflower sub and cut-in New Hillsdale - Cedar Niles 161 kV Line and Cedar Niles
SPP	SUNC/WEEC	543121	Hillsdale 161 kV	765341	Cedar Niles 161 kV	1	345	71.5	2015	Planned	Economic	ring bus. Priority Projects: Spearville to Comanche 345 kV
SPP	SUNC/WFEC	531469	Spearville 345 kV	765341	Comanche 345 kV	2	345	71.5	12/31/2014	Planned	Economic	Priority Projects, Spearville to Comanche 345 kV
SPP	WFEC/MKEC	765341	Comanche 345 kV	765342	Medicine Lodge 345 kV	1	345	42.9	12/31/2014	Planned	Economic	Priority Projects, Comanche to Medicine Lodge 345 kV
SPP	WFEC/MKEC	765341	Comanche 345 kV	765342	Medicine Lodge 345 kV	2	345	42.9	12/31/2014	Planned	Economic	Priority Projects, Comanche to Medicine Lodge 345 kV
SPP	MKEC/WERE	765342	Medicine Lodge 345 kV	532796	Wichita 345 kV	1	345	73.7	12/31/2014	Planned	Economic	Priority Projects, Medicine Lodge to Wichita 345 kV
SPP	MKEC/WERE	765342	Medicine Lodge 345 kV	532796	Wichita 345 kV	2	345	73.7	12/31/2014	Planned	Economic	Priority Projects, Medicine Lodge to Wichita 345 kV
SPP CDD	WFEC/OKGE	765341	Comanche 345 kV	515375	Woodward 345 kV	1	345	53.9	12/31/2014	Planned	Economic	Priority Projects, Comanche to Woodward 345 kV
522	WFEC/UKGE	/65341	Utebland 245 kV	515375	Woodward 345 kV	2	345	53.9	12/31/2014	Planned	Economic	Priority Projects, Comanche to Woodward 345 kV
SPP SDP	SPS/UKGE	522007	Hitchland 245 kV	515275	Woodward 245 KV	2	345	123.2	6/30/2014	Planned	Economic	Priority Projects, Hitchland to Woodward 345 KV
SPP	MIPLI	541197	Marvville 345 kV	541201	Sibley 345 kV	1	345	105	6/1/2017	Planned	Fconomic	Priority Projects, Marvville to Siblev 345 kV
SPP	MIPU/OPPD	541197	Maryville 345 kV	645458	Nebraska City 345 kV	1	345	70	6/1/2017	Planned	Economic	Priority Projects, Marvville to Nebraska Citv 345 kV
SPP	AEPW	508072	Texarkana 345 kV	510911	Valliant 345 kV	1	345	76	12/31/2014	Planned	Economic	Priority Projects, Texarkana to Valliant 345 kV
TVA	TN	360011	Rutherford	361655	Rockvale	1	161	7.38	11-Nov	Planned	Reliability	Construct Rockvale 161 kV, tap into Rutherford - East Murfreesboro 161 kV
TVA	TN	360011	Rutherford	360412	Christiana	1	161	16.08	10-Nov	Under Construction	Reliability	Loop East Murfreesboro-Christiana 161 kV into Rutherford 161 kV
TVA	TN	360011	Rutherford	360386	East Murfreesboro	1	161	29.1	10-Nov	Under Construction	Reliability	Loop East Murfreesboro-Christiana 161 kV into Rutherford 161 kV
TVA	TN	360012	Hemlock Semiconductor	360045	Montgomery 2	1	161	2.6	11-Nov	Planned	Reliability	Construct Hemlock Semiconductor 161 kV, provide loop feed into Montogemery 161 kV
TVA	TN	360019	Jackson	360683	Jackson 2	1	500/161	N/A	11-Jun	Under Construction	Reliability	Jackson 500/161 kV #2, install

New or Upgraded Transmission Facilities in EIPC 2020 Roll-Up Case
Includes ALL new/upgraded facilities (161 kV and above) that are projected to be in-service by 2020

PA	State(s)	From Bus #	From Bus Name	To Bus #	To Bus Name	Ckt	Voltage (kV)	Line Length (miles)	Expected In- Service Year	Planning Status	Project Type	Project Description
TVA	TN	360021	Shelby	360568	Lagoon Creek	1	500	35.15	12-Jun	Planned	Reliability	Shelby-Lagoon Creek 500 kV, uprate to 2598 MVA
TVA	MS	360030	Lowndes	360539	Caledonia CT	1	500	0.09	12-Jun	Planned	Reliability	Lowndes-Caledonia CT 500 kV, construct to provide connection for Caledonia CT generation
TVA	MS	360035	West Point	360688	Clay	1	500	0.08	12-Jun	Planned	Reliability	Construct Clay 500 kV, Re-terminate Choctaw-West Point 500 kV into Clay 500 kV, uprate to 2598 MVA; using original 1732 MVA rating, tie West Point 500 kV and Clay 500 kV together
TVA	MS	360036	West Point	361615	Waterway Drive Tap	1	161	26.67	11-Jun	Under Construction	Reliability	Construct Waterway Drive 161 kV, tap into West Point- Amory 161 kV
TVA	MS	360036	West Point	361496	Severcorr 2	2	161	20.39	10-Nov	Under Construction	Reliability	West Point-Severcorr 2 161 kV #2, construct for 371 MVA
TVA	TN	360038	Johnsonville Fossil 1-4	361027	Trace Creek Tap	1	161	3.83	11-Jun	Under Construction	Reliability	Johnsonville Fossil 1-4-Trace Creek Tap 161 kV, uprate to 334 MVA
TVA	TN	360041	Cumberland	360318	Erin	1	161	5.2	11-Jun	Under Construction	Reliability	Cumberland-Erin 161 kV, uprate to 299 MVA
TVA	KY	360043	Paradise	361032	Aberdeen Tap (KY)	1	161	14.9	11-Jun	Under Construction	Reliability	Uprate 161 kV line
IVA	IN	360044	Montgomery	360045	Montgomery 2	1	500/161	N/A	13-Jun	Planned	Reliability	Montgomery 500/161 kV #2, Install
TVA	TN	360045	Montgomery 2	360012	Hemlock Semiconductor	3	161	2.7	11-Nov	Planned	Reliability	provide loop feed into Montgomery 161 kV
TVA	TN	360045	Montgomery 2	361654	West Creek	1	161	9.14	10-Nov	Under Construction	Reliability	Screaming Eagles Tap 161 kV
IVA	IN	360048	Davidson	360581	Pin Hook	1	500	27.72	12-Jun	Planned	Reliability	Davidson-Pin Hook 500 kV, uprate to 2598 MVA
TVA	TN	360051	Maury	361593	Spring Hill	1	161	6.02	10-Nov	Under Construction	Reliability	Road 161 kV
TVA	AL	360060	Madison	360088	Limestone	1	161	23.8	11-Nov	Planned	Reliability	Madison-Limestone 500 kV, uprate to 2598 MVA
TVA	AL	360061	Madison 1	361313	Redstone Tap 2	1	161	13.23	11-Jun	Under Construction	Reliability	Madison 1-Redstone Tap 2 161 kV, uprate to 472 MVA
TVA	AL	360062	Bellefonte 1	360065	Widows Creek	1	500	29.75	18-Jun	Planned	Reliability	In response to TVA building a new nuclear facility, TVA will construct Bellefonte 500 kV substation and loop into Widows Creek 500 kV – Madison 500 kV
TVA	AL	360062	Bellefonte 1	360060	Madison	1	500	40.82	18-Jun	Planned	Reliability	In response to TVA building a new nuclear facility, TVA will construct Bellefonte 500 kV substation and loop into Widows Creek 500 kV – Madison 500 kV
TVA	AL	360063	Bellefonte 2	360065	Widows Creek	1	500	21.3	18-Jun	Planned	Reliability	In response to TVA building a new nuclear facility, TVA will construct Bellefonte 500 kV substation and loop into Widows Crock 500 kV. East Denist 500 kV.
TVA	AL	360063	Bellefonte 2	360058	East Point	1	500	71	18-Jun	Planned	Reliability	In response to TVA building a new nuclear facility, TVA will construct Bellefonte 500 kV substation and loop into
TVA	AL-GA	360067	Widows Creek 2	360414	Oglethorpe	1	161	30.56	11-Nov	Planned	Reliability	Widows Creek-Oglethorpe 161 kV 1 (#2 line), uprate to
TVA	AL-GA	360067	Widows Creek 2	360414	Oglethorpe	2	161	30.47	11-Nov	Planned	Reliability	Widows Creek-Oglethorpe 161 kV 2 (#3 line), uprate to
TVA	TN	360071	Wilson	360581	Pin Hook	1	161	14 18	12-Nov	Planned	Reliability	299 MVA Wilson-Din Hook 500 kV, uprate to 2508 MVA
TVA	TN	360081	Sequoyah	360110	Hiwassee	1	500	20.5	13-Nov	Planned	Reliability	Construct Hiwassee 500 kV, loop into Sequoyah-Watts Bar 500 kV #2
TVA	TN	360084	Athens (TN)	361403	Niota	1	161	3.9	11-Nov	Planned	Reliability	Construct Niota 161 kV, tap into Athens (TN)- Sweetwater 161 kV
TVA	TN	360085	Watts Bar 1	360093	Bull Run	1	500	53.91	10-Nov	Under Construction	Reliability	Watts Bar 1-Bull Run 500 kV, uprate to 2598 MVA
TVA	TN	360098	Volunteer 1	360527	East Knox	1	161	13	13-Nov	Planned	Reliability	Volunteer-East Knox 161 kV, construct for 450 MVA
TVA	TN	360100	John Sevier 1	360103	Phipps Bend	1	161	11.85	11-Nov	Planned	Reliability	John Sevier-Phipps Bend 161 kV #1, open circuit
IVA	IN	360100	John Sevier 1	360103	Phipps Bend	3	161	11.91	11-Nov	Planned	Reliability	John Sevier-Phipps Bend 161 kV #3, open circuit
TVA	TN	360100	John Sevier 1	360703	John Sevier CC Units 1-2 Tap	1	161	0	11-Nov	Planned	Reliability	John Sevier-John Sevier CC 161 kV, construct to provide connection for John Sevier CC generation
TVA	TN	360100	John Sevier 1	360705	John Sevier CC Units 1-2	3	161	0	11-Nov	Planned	Reliability	John Sevier-John Sevier CC 161 kV, construct to provide connection for John Sevier CC generation
TVA	TN	360110	Hiwassee	360085	Watts Bar 1	1	500	24.5	13-Nov	Planned	Reliability	Bar 500 kV #2
TVA	IN	360111	Hiwassee	360110	Hiwassee	1	500/161	N/A	13-Nov	Planned	Reliability	Hiwassee 500/161 kV install
TVA	TN	360133	Dumplin Valley	360527	East Knox	1	161	7.8	11-Jun	Under Construction	Reliability	Construct East Knox 161 kV, loop into Dumplin Valley-
TVA	TN	360135	Union City	361406	South Fifth Union City Tap	1	161	3	10-Nov	Under Construction	Reliability	Construct South Fifth Union City 161 kV, tap into Union
TVA	TN	360150	Alamo (TN)	361658	Bells	1	161	6	13-Jun	Planned	Reliability	Alamo-Bells 161 kV, construct for 472 MVA
TVA	TN	360152	South Jackson	361640	Morris Tap	1	161	8.42	11-Jun	Under Construction	Reliability	Construct Morris 161 kV, tap into South Jackson- McKellar 161 kV
TVA	TN	360158	Covington	361647	Burlison Tap	1	161	0.15	12-Jun	Planned	Reliability	Construct Burlison 161 kV, tap into Covington-Brighton Tap 161 kV
TVA	TN	360173	North Lexington	361594	Lexington	1	161	3.78	14-Jun	Planned	Reliability	Construct Lexington 161 kV, tap into North Lexington- West Lexington 161 kV
TVA	MS	360204	South Philadelphia	361120	Pearl River Tap	1	161	7.36	12-Jun	Planned	Reliability	Construct South Philadelphia 161 kV, tap into Philadelphia-Pearl River Tap 161 kV
TVA	MS	360209	Corinth	361531	Biggersville	1	161	8.9	10-Nov	Under Construction	Reliability	Corinth-Biggersville 161 kV, construct for 299 MVA
TVA	MS	360229	Calhoun City	361607	Southwest Bruce Tap	1	161	4.8	12-Jun	Planned	Reliability	Construct Southwest Bruce 161 kV, tap into Calhoun City-Coffeeville 161 kV
TVA	MS	360232	Sturgis	361589	Northwest Louisville	1	161	12.32	15-Jun	Planned	Reliability	Construct Northwest Louisville 161 kV, tap into Sturgis- Louisville 161 kV
TVA	MS	360234	Lowndes	361624	Black Warrior Tap	1	161	10.2	11-Jun	Under Construction	Reliability	Construct Black Warrior 161 kV, tap into Lowndes-New Hamilton 161 kV
TVA	MS	360236	Columbus	361620	Caldwell Road	1	161	16.36	10-Nov	Under Construction	Reliability	Construct Caldwell Road 161 kV, tap into Lowndes- Columbus 161 kV
TVA	MS	360242	Philadelphia	360204	South Philadelphia	1	161	0.9	12-Jun	Planned	Reliability	Construct South Philadelphia 161 kV, tap into Philadelphia-Pearl River Tap 161 kV
TVA	AL	360267	Wheeler	360268	Elgin	1	161	5.7	11-Jun	Under Construction	Reliability	Reconductor 161 kV line
TVA TVA	TN	360208	Guntersville	360280	Guntersville	14	161/115	24.40 N/Δ	10-Nov	Under Construction	Reliability	Cuntersville 161/115 kV replace
T1/A		0/0001	Limestere	2/1/27	Counter Strine	4	4/4		10-1100	Under Construction	Dell's L'	Construct County Line Road 161 kV. tap into Limestone-
IVA	AL	360281	Limestone	301637	County Line Road	1	161	6.9	10-Nov	Under Construction	Reliability	Jetport 161 kV

PA	State(s)	From Bus #	From Bus Name	To Bus #	To Bus Name	Ckt	Voltage (kV)	Line Length (miles)	Expected In- Service Year	Planning Status	Project Type	Project Description
TVA	AL	360287	Pisgah	360288	Henagar	1	161	5.99	11-Jun	Under Construction	Reliability	Pisgah-Henagar 161 kV, retire line trap, new rating of 299 MVA
TVA	AL	360288	Henagar	360286	Fort Payne	1	161	11.96	11-Jun	Under Construction	Reliability	Loop Flat Rock Tap-Fort Payne 161 kV into Henagar 161 kV
TVA	AL	360291	Farley	361650	Byrd Springs	1	161	4.71	11-Nov	Planned	Reliability	Construct Bird Springs 161 kV, tap into Farley-Redstone Tap 2 161 kV
TVA	AL	360291	Farley	360279	Guntersville	1	161	16.68	11-Nov	Planned	Reliability	Guntersville-Farley 161 kV, reconductor to 367 MVA
TVA	AL	360291	Farley	361566	Big Cove Tap	1	161	4.82	10-Nov	Under Construction	Reliability	Farley-Big Cove Tap 161 kV, reconductor to 472 MVA
TVA	TN	360322	Clarksville	361656	Gibbs Lane	1	161	5.9	11-Jun	Under Construction	Reliability	Construct Gibbs Lane 161 kV, tap into Clarksville-Saint Betblehem Tap 161 kV
TVA	KY	360331	Bowling Green	360540	Lost City	1	161	26.71	11-Jun	Under Construction	Reliability	Bowling Green-Lost City 161 kV, uprate to 237 MVA
TVA	KY	360334	Summer Shade	361603	East Glasgow Tap	1	161	12.2	10-Nov	Under Construction	Reliability	Construct East Glasgow 161 kV, tap into Summer Shade- Glasgow Tap
TVA	KY	360336	Franklin (KY)	361634	East Simpson Tap	1	161	2.2	11-Jun	Under Construction	Reliability	161 kV
TVA	TN	360349	Lebanon	360552	Lascassas	1	161	19	10-Nov	Under Construction	Reliability	Loop Gallatin-Lascassas 161 kV into Lebanon 161 kV
TVA	TN	360352	Gallatin Fossil 1	360349	Lebanon	1	161	19.4	12-Juli 10-Nov	Under Construction	Reliability	Loop Gallatin-Lascassas 161 kV into Lebanon 161 kV
TVA	TN	360356	Springfield	365215	Goodlettsville (NES)	1	161	15.47	12-Jun	Planned	Reliability	Loop North Nashville-Springfield 161 kV into Goodlettsville (NES) 161 kV
TVA	TN	360356	Springfield	360358	North Nashville	1	161	17.31	12-Jun	Planned	Reliability	Loop North Nashville-Springfield 161 kV into Goodlettsville (NES) 161 kV
TVA	TN	360358	North Nashville	361192	Bethel Road	1	161	9.84	12-Jun	Planned	Reliability	Loop North Nashville-Springfield 161 kV into
TVA	TN	360385	Murfreesboro	361651	Gateway	1	161	1.75	11-Jun	Under Construction	Reliability	Construct Gateway 161 kV, tap into Murfreesboro-
TVA	TN	360399	Great Falls	361516	Wheeler Mountain	1	161	25.84	11-Jun	Under Construction	Reliability	Construct Wheeler Mountain 161 kV, tap into Great Falls-
TVA	TN	360433	Kingston Fossil 7-9	361626	Kingston Tap	1	161	3.5	10-Nov	Under Construction	Reliability	Construct Kingston 161 kV, tap into Kingston Fossil 7-9-
ΤVΔ	TN	360442	Flza	361542	Windrock	1	161	10.86	11. lun	Under Construction	Reliability	Loudon 161 kV
TVA	TN	360442	East Loudoup	361652	Poland Creek Tan	1	161	10.00	14 Nov	Planned	Poliability	Construct Poland Creek 161 kV, tap into Fort Loudoun-
		260449	Wolf Crock	241410	Kelsey Bood	1	141	14	11 Nov	Diapped	Doliobility	Alcoa SS 161 kV Construct Byrdstown 161 kV, tap into Wolf Creek-
TVA		240495	Flizabethten	241404	Reisey Road	1	161	14	10 Neu	Pidilieu	Reliability	Huntsville (TN) 161 kV at Kelsey Road 161 kV Construct Row Branch 161 kV, tap into Elizabethton-Elk
TVA		300485	Elizabetritori	301494	Row Branch	1	1/1	15.87	10-INOV	Under Construction	Reliability	Mills 161 kV Wheeler-Mount Pleasant 161 kV, reconductor to 334
IVA	AL	300502	Dunn	300305	Mount Pleasant	1	101	20.54	II-JUN	Under Construction	Reliability	MVA
TVA	TN	360505	Rally Hill	361657	Chapel Hill	1	161	11.2	11-Nov	Planned	Reliability	Rally Hill-Chapel Hill 161 kV, construct for 299 MVA
TVA	TN	360520	Cross Plains	361613	White House Tap	1	161	4.23	10-Nov	Under Construction	Reliability	Bethel Road 161 kV
TVA	TN	360527	East Knox	360460	Nixon Road	1	161	11.1	11-Jun	Under Construction	Reliability	Construct East Knox 161 kV, loop into Dumplin Valley- Nixon Road 161 kV
TVA	MS	360528	Clayton Village	361290	Lakeside	1	161	1	13-Jun	Planned	Reliability	Construct Clayton Village 161 kV, loop into Clay- Lakeside 161 kV
TVA	MS	360528	Clayton Village	361610	Starkville Tap	1	161	4.6	13-Jun	Planned	Reliability	Clayton Village-Starkville Tap 161 kV, construct for 371 MVA
TVA	MS	360528	Clayton Village	361161	Catalpa Creek	1	161	9.1	13-Jun	Planned	Reliability	Clayton Village-Catalpa Creek 161 kV, construct for 371 MVA
TVA	TN	360530	Angeltown	360439	Portland SS	1	161	9.55	12-Jun	Planned	Reliability	Construct Angeltown 161 kV, loop into Portland SS- Westmoreland 161 kV
TVA	GA	360533	Center Point	360621	Moss Lake	1	230	16.08	10-Nov	Under Construction	Reliability	Center Point-Moss Lake 230 kV, construct for 530 MVA
IVA	GA	360621	Moss Lake	360622	Moss Lake	1	230/115	N/A	10-Nov	Under Construction	Reliability	Moss Lake 230/115 kV, install
TVA	GA	360622	Moss Lake	361442	Gordon County Tap	1	115	4.4	10-Nov	Under Construction	Reliability	Fuller 115 kV
TVA	GA	360622	Moss Lake	361486	Resaca South	1	115	2.67	10-Nov	Under Construction	Reliability	MVA
TVA	MS	360654	Choctaw	360035	West Point	1	500	37.38	12-Jun	Planned	Reliability	Re-terminate Choctaw-West Point 500 kV into Clay 500 kV, uprate to 2598 MVA; using original 1732 MVA rating, tie West Point 500 kV and Clay 500 kV together
TVA	TN	360678	Shelby (MLGW) 1	365573	Bolen Huse (MLGW)	1	161	5.8	15-Jun	Planned	Reliability	Construct Bolen Huse 161 kV, tap into Shelby 1- Northeast Gate 161 kV
TVA	MS	360688	Clay	360654	Choctaw	1	500	37.38	12-Jun	Planned	Reliability	Re-terminate Choctaw-West Point 500 kV into Clay 500 kV, uprate to 2598 MVA; using original 1732 MVA rating, tie West Point 500 kV and Clay 500 kV together
TVA	MS	360689	Clay	360528	Clayton Village	1	161	12	13-Jun	Planned	Reliability	Construct Clayton Village 161 kV, loop into Clay- Lakeside 161 kV
TVA	TN	360690	Montgomery 1	360012	Hemlock Semiconductor	1	161	3	13-Jun	Planned	Reliability	Instal second 500-161 kV bank
IVA	IN	361027	Trace Creek Tap	360318	Erin	1	161	28.87	11-Jun	Under Construction	Reliability	Trace Creek-Erin 161 kV, uprate to 273 MVA
TVA	TN	361031	Tennol Tap	361636	Chicago Bridge & Iron	1	161	0.5	10-Nov	Under Construction	Reliability	299 MVA
IVA	KY	361032	Aberdeen Tap (KY)	360332	East Bowling Green	1	161	25.64	11-Jun	Under Construction	Reliability	Uprate Paradise-East Bowling Green 161 kV Re-terminate Egypt P.S. Tap-West Point 161 kV into
TVA	MS	361107	Egypt Pumping Station Tap	360036	West Point	1	161	16.18	12-Jun	Planned	Reliability	Clay 161 kV Re-terminate Envnt P.S. Tan-West Point 161 kV into
TVA	MS	361107	Egypt Pumping Station Tap	360689	Clay	1	161	16.44	12-Jun	Planned	Reliability	Clay 161 kV
TVA	MS	361107	Egypt Pumping Station Tap	360227	Egypt Pumping Station	1	161	1.75	12-Jun	Planned	Reliability	kV, replace line trap, new rating of 136 MVA
TVA	MS	361121	Aberdeen Tap (MS)	360036	West Point	1	161	10.61	12-Jun	Planned	Reliability	161 kV, uprate to 446 MVA
TVA	MS	361121	Aberdeen Tap (MS)	360689	Clay	1	161	10.74	12-Jun	Planned	Reliability	161 kV, uprate to 446 MVA
TVA	MS	361175	Langford	361600	Fannin Tap	1	161	5	11-Nov	Planned	Reliability	161 kV
IVA	ľN	361192	Bethel Road	365215	Goodlettsville (NES)	1	161	7.91	12-Jun	Planned	Reliability	Install new structures and conductors
TVA	AL	361224	Addison	361642	Helicon	1	161	6.5	11-Nov	Planned	Reliability	299 MVA

Includes ALL new/upgrade	d facilities (161 kV and above) that are projected	ed to be in-service by 2020

РА	State(s)	From Bus #	From Bus Name	To Bus #	To Bus Name	Ckt	Voltage (kV)	Line Length (miles)	Expected In- Service Year	Planning Status	Project Type	Project Description
TVA	TN	361228	Moscow Tap (TN)	361628	Macon Tap (TN)	1	161	4.85	13-Jun	Planned	Reliability	Construct Macon Tap (TN) 161 kV, tap into Moscow Tap (TN)-Canadaville 161 kV
TVA	MS	361255	Woodson Ridge	361428	College Hill	1	161	2	11-Jun	Planned	Reliability	Woodson Ridge-College Hill 161 kV, construct for 237 MVA
TVA	TN	361267	Westmoreland	360530	Angeltown	1	161	6.4	12-Jun	Planned	Reliability	Construct Angeltown 161 kV, loop into Portland SS- Westmoreland 161 kV
TVA	GA	361289	Crawfish Creek	361633	Cloudland Canyon	1	230	5.59	10-Nov	Under Construction	Reliability	Construct Cloudland Canyon 230 kV, tap into Crawfish Creek-Kensington 230 kV
TVA	MS	361290	5LAKESIDE MS	360036	West Point	1	161	13	12-Jun	Planned	Reliability	Re-terminate Lakeside-West Point 161 kV into Clay 161 kV
TVA	MS	361290	5LAKESIDE MS	360689	Clay	1	161	13	12-Jun	Planned	Reliability	Re-terminate Lakeside-West Point 161 kV into Clay 161 kV
TVA	AL	361332	Sylvania	361645	Rainsville Industrial Park Tap	1	161	2.46	11-Jun	Under Construction	Reliability	Construct Rainsville Industrial Park 161 kV, tap into Sylvania-Section 161 kV
TVA	TN	361388	Unionville	361657	Chapel Hill	1	161	6.09	12-Jun	Planned	Reliability	Unionville-Chapel Hill 161 kV, construct for 299 MVA
TVA	TN	361403	Niota	361210	Sweetwater	1	161	7.94	11-Nov	Planned	Reliability	Sweetwater 161 kV
TVA	TN	361406	South Fifth Union City Tap	361422	Troy	1	161	6.88	10-Nov	Under Construction	Reliability	City-Troy 161 kV
TVA	MS	361411	Sand Hill	361600	Fannin Tap	1	161	4.18	11-Nov	Planned	Reliability	Construct Fannin 161 kV, tap into Langford-Sand Hill 161 kV
TVA	AL	361438	Flat Rock Tap	360288	Henagar	1	161	9.46	11-Jun	Under Construction	Reliability	Loop Flat Rock Tap-Fort Payne 161 kV into Henagar 161 kV
TVA	GA	361442	Gordon County Tap	360626	Fuller	1	115	3.1	10-Nov	Under Construction	Reliability	Construct Gordon County 115 kV, tap into Moss Lake- Fuller 115 kV
TVA	TN	361494	Row Branch	361142	Elk Mills	1	161	3	10-Nov	Under Construction	Reliability	Construct Row Branch 161 kV, tap into Elizabethton-Elk Mills 161 kV
TVA	MS	361496	Severcorr 2	360036	West Point	1	161	20.28	12-Jun	Planned	Reliability	Re-terminate Severcorr 2-West Point 161 kV #1 into Clay 161 kV
TVA	MS	361496	Severcorr 2	360689	Clay	1	161	20.39	12-Jun	Planned	Reliability	Re-terminate Severcorr 2-West Point 161 kV #1 into Clay 161 kV
TVA	GA	361504	West Ringgold	361514	West Ringgold	2	230/115	N/A	11-Jun	Under Construction	Reliability	West Ringgold 230/115 kV #2, install
TVA	TN	361516	Wheeler Mountain	360427	Spring City	1	161	21.04	11-Jun	Under Construction	Reliability	Spring City 161 kV
TVA	MS	361529	Starkville SS	360036	West Point	1	161	14.19	12-Jun	Planned	Reliability	Re-terminate Starkville SS-West Point 161 kV #1 into Clay 161 kV
TVA	MS	361529	Starkville SS	360689	Clay	1	161	12.9	12-Jun	Planned	Reliability	Re-terminate Starkville SS-West Point 161 kV #1 into Clay 161 kV
TVA	MS	361529	Starkville SS	361610	Starkville Tap	1	161	1	13-Jun	Planned	Reliability	Construct Starkville Tap 161 kV, tap into Starkville SS- Starkville 161 kV
TVA	TN	361542	Windrock	360445	Braytown	1	161	3.04	11-Jun	Under Construction	Reliability	Windrock-Braytown 161 kV, uprate to 181 MVA
TVA	MS	361589	Northwest Louisville	360239	Louisville	1	161	20.32	15-Jun	Planned	Reliability	Louisville 161 kV
TVA	TN	361593	Spring Hill	360531	Kedron Road	1	161	0.54	10-Nov	Under Construction	Reliability	Road 161 kV
TVA	TN	361594	Lexington	361319	West Lexington	1	161	0.75	14-Jun	Planned	Reliability	Construct Lexington 161 kV, tap into North Lexington- West Lexington 161 kV
TVA	KY	361603	East Glasgow Tap	361113	Glasgow Tap	1	161	5.94	10-Nov	Under Construction	Reliability	Construct East Glasgow 161 kV, tap into Summer Shade- Glasgow Tap 161 kV
TVA	MS	361607	Southwest Bruce Tap	360230	Coffeeville	1	161	18.67	12-Jun	Planned	Reliability	Construct Southwest Bruce 161 kV, tap into Calhoun City-Coffeeville 161 kV
TVA	MS	361610	Starkville Tap	360233	Starkville Tap	1	161	2	13-Jun	Planned	Reliability	Construct Starkville Tap 161 kV, tap into Starkville SS- Starkville 161 kV
TVA	TN	361613	White House Tap	361192	Bethel Road	1	161	4.7	10-Nov	Under Construction	Reliability	Construct White House 161 kV, tap into Cross Plains- Bethel Road 161 kV
TVA	MS	361615	Waterway Drive Tap	360225	Amory	1	161	1.7	11-Jun	Under Construction	Reliability	Construct Waterway Drive 161 kV, tap into West Point- Amory 161 kV
TVA	TN	361618	Kelsey Road	361619	Byrdstown	1	161	15	11-Nov	Planned	Reliability	Construct Byrdstown 161 kV, tap into Wolf Creek- Huntsville (TN) 161 kV at Kelsev Road 161 kV
TVA	TN	361618	Kelsey Road	360450	Huntsville (TN)	1	161	36.66	11-Nov	Planned	Reliability	Construct Byrdstown 161 kV, tap into Wolf Creek- Huntsville (TN) 161 kV at Kelsey Road 161 kV
TVA	MS	361620	Caldwell Road	360234	Lowndes	1	161	0.12	10-Nov	Under Construction	Reliability	Construct Caldwell Road 161 kV, tap into Lowndes-
TVA	MS	361624	Black Warrior Tap	361649	New Hamilton	1	161	1.6	11-Jun	Under Construction	Reliability	Construct Black Warrior 161 kV, tap into Lowndes-New Hamilton 161 kV
TVA	TN	361626	Kingston Tap	361214	Loudon	1	161	14.1	10-Nov	Under Construction	Reliability	Construct Kingston 161 kV, tap into Kingston Fossil 7-9-
TVA	TN	361628	Macon Tap (TN)	361269	Canadaville	1	161	6.59	13-Jun	Planned	Reliability	Construct Macon Tap (TN) 161 kV, tap into Moscow Tap (TN). Canadaville 161 kV
TVA	TN	361631	Jena	361638	Niles Ferry	1	161	5.6	11-Nov	Planned	Reliability	Jena-Niles Ferry 161 kV, construct for 299 MVA
TVA	GA	361633	Cloudland Canyon	361503	Kensington	1	230	6.93	10-Nov	Under Construction	Reliability	Construct Cloudland Canyon 230 kV, tap into Crawfish Creek-Kensington 230 kV
TVA	KY	361634	East Simpson Tap	361570	Mitchellville Tap	1	161	5.65	11-Jun	Under Construction	Reliability	Construct East Simpson 161 kV, tap into Franklin (KY)- Mitchellville Tap 161 kV
TVA	TN	361636	Chicago Bridge & Iron	361036	Tennol	1	161	5.35	10-Nov	Under Construction	Reliability	Construct Chicago Bridge & Iron 161 kV
TVA	AL	361637	County Line Road	360273	Jetport	1	161	2.4	10-Nov	Under Construction	Reliability	Jetport 161 kV
TVA	TN	361640	Morris Tap	361457	McKellar	1	161	1	11-Jun	Under Construction	Reliability	Construct Morris 161 kV, tap into South Jackson- McKellar 161 kV
TVA	AL	361645	Rainsville Industrial Park Tap	361472	Section	1	161	10.03	11-Jun	Under Construction	Reliability	Construct Rainsville Industrial Park 161 kV, tap into Sylvania-Section 161 kV
TVA	TN	361647	Burlison Tap	361338	Brighton Tap	1	161	5.17	12-Jun	Planned	Reliability	Construct Burlison 161 kV, tap into Covington-Brighton Tap 161 kV

	Includes ALL new/upgraded facilities (161 kV and above) that are projected to be in-service by 2020													
State(s)	From Bus #	From Bus Name	To Bus #	To Bus Name	Ckt	Voltage (kV)	Line Length (miles)	Expected In- Service Year	Planning Status	Project Type	Project Description			
MS	361649	New Hamilton	361125	Hamilton (MS)	1	161	0.2	11-Jun	Under Construction	Reliability	Construct New Hamilton 161 kV, tap into Lowndes- Hamilton (MS) 161 kV			
AL	361650	Byrd Springs	361313	Redstone Tap 2	1	161	0.76	11-Nov	Planned	Reliability	Construct Bird Springs 161 kV, tap into Farley-Redstone Tap 2 161 kV			
TN	361651	Gateway	361375	Blackman Tap	1	161	4	11-Jun	Under Construction	Reliability	Construct Gateway 161 kV, tap into Murfreesboro- Blackman Tap 161 kV			
TN	361652	Poland Creek Tap	360096	Alcoa SS	1	161	5.28	14-Nov	Planned	Reliability	Construct Poland Creek 161 kV, tap into Fort Loudoun- Alcoa SS 161 kV			
TN	361654	West Creek	361443	Screaming Eagles Tap	1	161	5	10-Nov	Under Construction	Reliability	Construct West Creek 161 kV, tap into Montgomery- Screaming Eagles Tap 161 kV			
TN	361655	Rockvale	360386	East Murfreesboro	1	161	21.72	11-Nov	Planned	Reliability	Construct Rockvale 161 kV, tap into Rutherford-East Murfreesboro 161 kV			

1

1

1

1

1

1

1

1

1

161

161

161

161

161

161/115

161

161

161

1.96

9.77

9.78

4.11

4.19

N/A

5.6

5.6

0

11-Jun

15-Jun

13-Jun

13-Jun

13-Jun

13-Jun

13- Jun

13-Jun

12-Jun

Under Construction

Planned

Planned

Planned

Planned

Planned

Planned

Planned

Planned

Reliability

Reliability

Reliability

Reliability

Reliability

Reliability

Reliability

Reliability

Reliability

361274 Saint Bethlehem Tap

Northeast Gate (MLGW)

Poplar Avenue (MLGW)

South Collierville (MLGW)

Shelton Road (MLGW)

University (MLGW)

Chelsea (MLGW)

365591

365576

365595

365593

365913

365827

365511 Fite Road

360496 C-33 (DOE)

New or Upgraded Transmission Facilities in EIPC 2020 Roll-Up Case

TVA

ΤN

ΤN

ΤN

ΤN

ΤN

ΤN

ΤN

ΤN

ΚY

361656 Gibbs Lane

365600 Fite Road

366005 Grahamville

365573 Bolen Huse (MLGW)

365577 North Primary (MLGW)

365577 North Primary (MLGW)

365591 Northeast Gate (MLGW)

365826 Collierville Gate (MLGW)

365913 South Collierville (MLGW)

Construct Gibbs Lane 161 kV, tap into Clarksville-Saint

Construct Bolen Huse 161 kV, tap into Shelby 1-

North Primary-Poplar Avenue 161 kV, reconductor to

North Primary-University 161 kV, reconductor to 222

Northeast Gate-Chelsea 161 kV, reconductor to 222

Construct South Collierville 161 kV, tap into Collierville

Construct South Collierville 161 kV, tap into Collierville

Grahamville (EON) to C-33 (DOE) 161 kV #2, construct

for 307 MVA (with 5% series reactor at Grahamville)

Bethlehem Tap 161 kV

Northeast Gate 161 kV

Fite Road 161/115 kV, install

Gate-Shelton Road 161 kV

Gate-Shelton Road 161 kV

222 MVA

MVA

MVA

Appendix C: New/Upgraded Generation Included in Roll-Up Model

РА	State/ Province	Unit Name	Unit ID	PSSE Bus #	Installed Capacity (MW)	Dispatched Amount (MW)	Fuel Type	Generation Technology	Status	In-Service Year	Notes
Duke Carolinas	SC	CLFSDGEN 27.000	6	306460	825	825	Coal	Steam Turbine	Committed	2012	Under Construction
Duke Carolinas	SC	CLEVELAND1 18.000	1	306578	179.3	179.3	Gas	Combustion Turbine	Committed	2012	Under Construction
Duke Carolinas	SC	CLEVELAND2 18.000	2	306580	179.3	179.3	Gas	Compustion Turbine	Committed	2012	Under Construction
Duke Carolinas	SC	CLEVELANDS 10.000	4	306581	179.3	0	Gas	Combustion Turbine	Committed	2012	Under Construction
Duke Carolinas	NC	BUCKG1 18.000	1	306565	179	179	Gas	Combined Cycle	Committed	2011	Under Construction
Duke Carolinas	NC	BUCKG2 18.000	2	306566	179	179	Gas	Combined Cycle	Committed	2011	Under Construction
Duke Carolinas	NC	BUCKS1 18.000	3	306567	263	263	Gas	Combined Cycle	Committed	2011	Under Construction
Duke Carolinas	NC	DNRVRG1 18.000	1	306570	179	179	Gas	Combined Cycle	Committed	2012	Under Construction
Duke Carolinas	NC	DNRVRG2 18.000	2	306572	263	263	Gas	Combined Cycle	Committed	2012	Under Construction
Enteray	AR	Plum point Unit 2	1	338389	735	200	Fossil	Steam Turbine	Committed	2012	
Entergy	TX	Lewis Creek Combustion Turbine 1(CT)	1	334014	211	0	Fossil	Combustion Turbine	Proposed	2019	
Entergy	TX	Lewis Creek CT 2	1	334015	211	0	Fossil	Combustion Turbine	Proposed	2019	
Entergy	TX	Lewis Creek Steam Turbine (ST)	1	334016	211	0	Fossil	Steam Turbine	Proposed	2019	
FPL FPL	FL	CAPE-CT1	1	401111	231	231	Natural Gas	Compustion Turbine	State/Budget Approva	2013	
FPL FPI	FL	CAPE-CT2 CAPE-CT3	1	401112	242	242	Natural Gas	Combustion Turbine	State/Budget Approva	2013	
FPL	FL	CAPE-STE	1	401115	515	515	Waste Heat	Combined Cycle	State/Budget Approva	2013	
FPL	FL	WCE3-CT1	1	401355	240	240	Natural Gas	Combustion Turbine	State/Budget Approva	2011	
FPL	FL	WCE3-CT2	1	401356	240	240	Natural Gas	Combustion Turbine	State/Budget Approva	2011	
FPL	FL	WCE3-CT3	1	401357	240	240	Natural Gas	Combustion Turbine	State/Budget Approva	2011	
FPL	FL FL	WCE3-STE	1	401358	498.9	498.9	Waste Heat	Steam Turbine	state/Budget Approva	2011	
FPL	FL	RIV-CT1	1	401390	231	231	Natural Gas	Combustion Turbine	Planned	2014	
FPL	FL	RIV-CT3	1	401392	231	231	Natural Gas	Combustion Turbine	Planned	2014	
FPL	FL	RIV-STE	1	401394	503	503	Waste Heat	Steam Turbine	Planned	2014	
FPL	FL	TURK.PT.6	1	410006	1300	1290	Nuclear	Steam Turbine	Proposed	2020	
FPL	FL	TURK.PT.7	1	410007	1300	1290	Nuclear	Steam Turbine	Proposed	2020	
FPL	FL	TURK.P1.6	1	410006	1300	1290	Nuclear	Steam Turbine	Planned	2020	
IFSO	ON FL	10KK.P1.7 22DEG 13.800	1	410007	1500	1290	Wind	Wind Turbine	Proposed	2020	
IESO	ON	ADELAIDEKRWD13.800	1	160190	60	0	Wind	Wind Turbine	Proposed	2016	
IESO	ON	ADELAIDESROY13.800	1	160185	40	0	Wind	Wind Turbine	Proposed	2016	
IESO	ON	ARMOW 13.800	1	158998	80	0	Wind	Wind Turbine	Proposed	2017	
IESO	ON	ARRAN 13.800	1	158977	115	0	Wind	Wind Turbine	Proposed	2017	
IESO	ON	BELLERIVER 13.800	1	160193	95	0	Wind	Wind Turbine	Proposed	2017	
IESO		BLUEWATERB 13.800	1	158999	60	0	Wind	Wind Turbine	Proposed	2017	
IESO	ON	BLUEFYLAKE 13.800	1	151082	4.2	0	Water	Hydro Turbine	Proposed	2017	
IESO	ON	BORNISH 13.800	1	160186	73.5	0	Wind	Wind Turbine	Proposed	2016	
IESO	ON	BRUCEPEN 13.800	1	158996	125	0	Wind	Wind Turbine	Proposed	2017	
IESO	ON	CALSTOCK 13.800	1	152153	27	0	Water	Hydro Turbine	Proposed	2016	
IESO	ON	CEDARPOINT1 13.800	1	160188	100	0	Wind	Wind Turbine	Proposed	2017	
IESO		CEDARPOINT2 13.800	1	151073	20	0	Wind	Wind Turbine	Proposed	2017	
IESO	ON	COLDWELL 13.800	1	151073	100	0	Wind	Wind Turbine	Proposed	2018	
IESO	ON	DOVER 13.800	1	160192	39	0	Wind	Wind Turbine	Proposed	2016	
IESO	ON	DOVER 13.800	2	160192	40.5	0	Wind	Wind Turbine	Proposed	2018	
IESO	ON	EASTLAKE 13.800	1	160181	99	0	Wind	Wind Turbine	Proposed	2016	
IESO	ON	ELKLAKE 13.800	1	152159	200	0	Wind	Wind Turbine	Proposed	2016	
IESO		ERIEAU 13.800 FIT RIC EDDV13.800	1	160/01	5.3	0	Wind	Hydro Turbine	Committed	2016	
IESO	ON	FIT BL 2A 13.800	1	160500	20	0	Wind	Wind Turbine	Committed	2011	
IESO	ON	FIT_BL_2B 13.800	1	160501	20	0	Wind	Wind Turbine	Committed	2011	
IESO	ON	FIT_BL_PH1 13.800	1	160488	20	0	Wind	Wind Turbine	Committed	2011	
IESO	ON	FIT_BOUNDARY13.800	1	160457	3.75	0	Water	Hydro Turbine	Committed	2011	
IESO	ON	FIT_COMBER23220.00	1	160476	82.8	0	Wind	Wind Turbine	Committed	2011	
IESU IFSO		FIT_COMBER24220.00	1	160504	82.8 82.8	0	Wind	Wind Turbine	Proposed	2011	
IESO	ON	FIT_COMBERG213.800	1	160505	82.8	0	Wind	Wind Turbine	Proposed	2016	
IESO	ON	FIT_COMBERG313.800	1	160506	82.8	0	Wind	Wind Turbine	Proposed	2016	
IESO	ON	FIT_COMBERG413.800	1	160507	82.8	0	Wind	Wind Turbine	Proposed	2016	
IESO	ON	FIT_COMBERG513.800	1	160508	82.8	0	Wind	Wind Turbine	Proposed	2016	
IESO		FIL_COMBERG613.800	1	160495	82.8	0	Wind	Wind Turbine	Committed	2016	
IESU IFSO		FIT_EARM_OWN13.800	1	160405	0.9	0	Wind	Wind Turbine	Committed	2011	I
IESO	ON	FIT GITCHIG113.800	1	160481	10	0	Water	Hydro Turbine	Committed	2014	
IESO	ON	FIT_GITCHIG213.800	1	160482	8.9	0	Water	Hydro Turbine	Committed	2014	
IESO	ON	FIT_GOUL_BAY13.800	1	160497	25	0	Wind	Wind Turbine	Committed	2012	
IESO	ON	FIT_HALF_MIL13.800		160494	4.8	0	Water	Hydro Turbine	Committed	2011	
IESO	ON	FIL_IVANHOE 13.800	1	160451	5.1	0	Water	Hydro Furbine	Committed	2011	
IESU IFSO		FIT_LAPINIGA13.800 FIT_LISKEAR113.800	1	160454	0.2	0	Solar	Photovoltaic	Committee	2011	
IESO	ON	FIT LISKEAR313.800	1	160467	10	0	Solar	Photovoltaic	Committed	2011	
IESO	ON	FIT_LISKEAR413.800	1	160468	10	0	Solar	Photovoltaic	Committed	2014	
IESO	ON	FIT_MCLEANS113.800	1	160483	50	0	Wind	Wind Turbine	Committed	2011	
IESO	ON	FIT_MCLEANS213.800	1	160484	10	0	Wind	Wind Turbine	Committed	2011	
IESO	ON	FIL_MIDDLETW13.800	1	160455	5	0	Water	Hydro Turbine	Committed	2011	
IESU IESO		FIL_INAIVIE_GT 13.800 FIT_NEES_GEN13.800	1	1604/1	10	0	Water	Hydro Turbino	Committed	2014	
IESO	ON	FIT NP ABITI13.800	1	160462	10	0	Solar	Photovoltaic	Committed	2013	
IESO	ON	FIT_NP_EMPIR13.800	1	160463	10	0	Solar	Photovoltaic	Committed	2014	
IESO	ON	FIT_NP_LONG_13.800	1	160472	10	0	Solar	Photovoltaic	Committed	2014	
IESO	ON	FIT_NP_MART_13.800	1	160461	10	0	Solar	Photovoltaic	Committed	2011	
IESO	ON	FIL_OUTLET 13.800	1	160459	2.5	0	Water	Hydro Turbine	Committed	2011	
IESU IESO	ON	FIL_PAK_GT 13.800 FIT PEES GEN13.800	1	160442	48.0	0	Water	Hydro Turbine	Committed	2011	

РА	State/ Province	Unit Name	Unit ID	PSSE Bus #	Installed Capacity (MW)	Dispatched Amount (MW)	Fuel Type	Generation Technology	Status	In-Service Year	Notes
IESO	ON	FIT_PRT_DOV 13.800	1	160499	105	0	Wind	Wind Turbine	Committed	2011	
IESO	ON	FIT_SUMHV_G113.800	1	160487	125	0	Wind	Wind Turbine	Committed	2011	
IESO	ON	FIT_TROU_GEN13.800	1	160447	4	0	Water	Hydro Turbine	Committed	2014	
IESO	ON	FIT_WAHP_GEN13.800	1	160443	6.5	0	Water	Hydro Turbine	Committed	2011	
IESO	ON	FIT_WAPO_GEN13.800	1	160444	6.5	0	Water	Hydro Turbine	Committed	2012	
IESO	ON	FIT_WHE_PNE 13.800	1	160502	60	0	Wind	Wind Turbine	Committed	2011	
IESO	ON	FIT_WOLF_IS 13.800	1	160503	300	0	Wind	Wind Lurbine	Committed	2011	
IESO	ON	FLOWERFALLS 13.800	1	151075	9.9	0	Water	Hydro Turbine	Proposed	2016	
IESO	ON	FRIDAYLAKE 13.800	1	152154	100	0	Wind	Wind Turbine	Committed	2014	
IESO	ON	COSFIELDWTG10.0900	1	160788	20.0	0	Wind	Wind Turbine	Committed	2014	
IESO	ON	GOSHELDW1020.0700	1	158971	100	0	Wind	Wind Turbine	Pronosed	2014	
IESO	ON	GRANDBEND 13.800	1	158972	100	0	Wind	Wind Turbine	Proposed	2016	
IESO	ON	GRANDVALLEY 13.800	1	158973	40	0	Wind	Wind Turbine	Proposed	2016	
IESO	ON	GREENWCHWTG10.6900	1	151770	25.3	0	Wind	Wind Turbine	Committed	2012	
IESO	ON	GREENWCHWTG20.6900	1	151771	23	0	Wind	Wind Turbine	Committed	2012	
IESO	ON	GREENWCHWTG30.6900	1	151772	25.3	0	Wind	Wind Turbine	Committed	2013	
IESO	ON	GREENWCHWTG40.6900	1	151773	25.3	0	Wind	Wind Turbine	Committed	2014	
IESO	ON	GRNFLDS_CTG116.500	1	156741	195.3	0	Gas	Combined Cycle	Committed	2012	
IESO	ON	GRNFLDS_STG213.800	1	156742	134	0	Gas	Combined Cycle	Committed	2012	
IESO	ON	HEALEY_FG1 4.1600	1	155746	6.7	0	Water	Hydro Turbine	Proposed	2014	
IESO	ON	HEALEY_FG2346.6000	2	155747	3.38	0	Water	Hydro Turbine	Proposed	2014	
IESO	ON	HEALEY_FG2346.6000	3	155/4/	3.38	0	Water	Hydro Turbine	Proposed	2014	
IESU		HEALET_FG2340.0000	4	100/4/	3.38	0	Water	Hydro Turbino	Committed	2014	
IESO	ON	HIGHFALLS 13.800	1	160194	0.4	0	Wind	Wind Turbine	Droposod	2013	
IESO	ON	VEEKATIKOWANI3 800	1	151074	60	0	Wind	Wind Turbine	Proposed	2017	
IFSO	ON	KENTCNTR 13.800	1	160194	100	0	Wind	Wind Turbine	Proposed	2018	
IESO	ON	KINGSBRDG2 13.800	1	158991	270	0	Wind	Wind Turbine	Proposed	2018	
IESO	ON	KRUGER-WTG1 0.6900	1	160772	25.3	0	Wind	Wind Turbine	Committed	2013	1
IESO	ON	KRUGER-WTG2 0.6900	1	160773	25.3	0	Wind	Wind Turbine	Committed	2013	
IESO	ON	KRUGER-WTG3 0.6900	1	160774	32.2	0	Wind	Wind Turbine	Committed	2013	
IESO	ON	KRUGER-WTG4 0.6900	1	160775	18.4	0	Wind	Wind Turbine	Committed	2013	
IESO	ON	LAURIER 13.800	1	153150	100	0	Wind	Wind Turbine	Proposed	2012	
IESO	ON	LISKEARD2 13.800	1	152164	10	0	Solar	Photovoltaic	Proposed	2016	
IESO	ON	LISKEARD5 13.800	1	152165	10	0	Solar	Photovoltaic	Proposed	2017	
IESO	ON	LOCHLOMOND 13.800	1	151077	48.3	0	Solar	Photovoltaic	Proposed	2017	
IESO	ON	LOWERLAKE 13.800	1	151081	10	0	Water	Hydro Turbine	Proposed	2018	
IESU	ON	MASINABIK 13.800	1	151072	150	0	Wind	Wind Turbine	Proposed	2019	
IESO	ON	MEDLINOLINN 12 900	1	160204	40	0	Wind	Wind Turbine	Proposed	2010	
IESO	ON		1	151709	6.4	6.08	Water	Hydro Turbine	Proposed	2018	
IESO	ON	MURILLO_DSB224.700	2	151709	6.4	6.08	Water	Hydro Turbine	Proposed	2014	
IESO	ON	MYRTLEFALLS 13.800	1	151080	2	0	Water	Hydro Turbine	Proposed	2016	
IESO	ON	NBRUCEPEN 13.800	1	158997	150	0	Wind	Wind Turbine	Proposed	2017	
IESO	ON	NIMAASING 13.800	1	152152	200	0	Wind	Wind Turbine	Proposed	2016	
IESO	ON	NRTHLNDCOCRN13.800	1	152162	10	0	Solar	Photovoltaic	Proposed	2018	
IESO	ON	NRTHLNDHUNTA13.800	1	152161	10	0	Solar	Photovoltaic	Proposed	2016	
IESO	ON	NRTHLNDMTHSN13.800	1	152163	10	0	Solar	Photovoltaic	Proposed	2016	
IESO	ON	RALEIGH-WTG10.5750	1	160763	18	0	Wind	Wind Turbine	Committed	2012	
IESO	ON	RALEIGH-WTG20.5750	1	160764	18	0	Wind	Wind Turbine	Committed	2011	
IESO	ON	RALEIGH-WTG30.5750	1	160765	21	0	Wind	Wind Turbine	Committed	2013	
IESO	ON	RALEIGH-WIG40.5750	1	160766	21	0	Wind	Wind Turbine	Committed	2014	
IESU	ON	RANGERLAKE IA 13.800	1	152155	50	0	Wind	Wind Turbine	Proposed	2018	
IESO	ON	RANGERLAKE IB 13.800	1	152150	50	0	Wind	Wind Turbine	Proposed	2018	
IESO	ON		1	152157	50	0	Wind	Wind Turbine	Proposed	2018	
IESO	ON	ROARINGRAPID13 800	1	151079	5.1	0	Water	Hydro Turbine	Proposed	2010	
IESO	ON	ROCKHUL 13 800	1	155150	100	0	Wind	Wind Turbine	Proposed	2013	
IESO	ON	SHILOH 13.800	1	160302	46	0	Wind	Wind Turbine	Proposed	2018	1
IESO	ON	SILCOTE 13.800	1	158980	46.8	0	Wind	Wind Turbine	Proposed	2016	
IESO	ON	SKYWAY 13.800	1	158974	100	0	Wind	Wind Turbine	Proposed	2016	
IESO	ON	SUPERIORSHOR13.800	1	151076	25.3	0	Wind	Wind Turbine	Proposed	2017	
IESO	ON	SYDENHAM 13.800	1	160196	66.7	0	Wind	Wind Turbine	Proposed	2017	
IESO	ON	TALBOT_WTG1 0.5750	1	160781	25.3	0	Wind	Wind Turbine	Committed	2012	
IESO	ON	TALBOT_WTG2 0.5750	1	160782	23	0	Wind	Wind Turbine	Committed	2012	
IESO	ON	IALBOT_WTG3 0.5750	1	160783	25.3	0	Wind	Wind Turbine	Committed	2012	
IESO	ON	IALBO1_WIG4 0.5750		160784	25.3	0	Wind	Wind Turbine	Committed	2012	
IESU	UN		1	152455	100	U	Cas	Eossil	Committed	2019	
IESU		TURK_EC_LVI 10.500	1	103000	104	U	Cas	I USSII	Committed	2012	
IESU IESO		7UDICH 13.800	1	158070	37.5	0	Wind	Wind Turbine	Proposed	2012	
ISO-NE	MF	OP197 STRNG1	1	100707	25.3	51	Wind	Wind Turbine	Committed	2011	
ISO-NE	MF	OP197 STRNG2	2	100708	25.3	5.1	Wind	Wind Turbine	Committed	2011	
ISO-NE	ME	QP221-1_CLR2	2	103157	21.6	4.2	Wind	Wind Turbine	Committed	2012	
ISO-NE	NH	GRANITE DIX	7	105166	21	4.2	Wind	Wind Turbine	Committed	2011	
ISO-NE	NH	GRANITE OWLS	14	105167	42	8.4	Wind	Wind Turbine	Committed	2011	
ISO-NE	NH	GRANITE FISH	12	105168	36	7.2	Wind	Wind Turbine	Committed	2011	
ISO-NE	VT	SHEFLD CLR-N	1	108898	30	6	Wind	Wind Turbine	Committed	2010	
ISO-NE	MA	CAPE W CLR-1	1	111380	126	37.8	Wind	Wind Turbine	Committed		In-Service Date under negotiation
ISO-NE	MA	CAPE W CLR-2	2	111381	108	32.4	Wind	Wind Turbine	Committed		In-Service Date under negotiation
ISO-NE	MA	CAPE W CLR-3	3	111382	126	37.8	Wind	Wind Lurbine	Committed		In-Service Date under negotiation
ISO-NE	MA	CAPE W CLR-4	4	111383	108	32.4	Wind Diamage	Wind Lurbine	Committed	2012	In-Service Date under negotiation
ISU-NE	MA	RUSSELL BIO		10563	60	60	Biomass	Steam Turbine	Committed	2013	
ISO NE			1	121560	43	43	Biomass	Steam Turbing	Committed	2014	
	CT	FLAINFIELD	C1	121000	40	40	Natural Cas	Combined Cyclo	Committed	2014	
ISO-NE ISO-NF	CT CT	KLEEN C2	C2	122030	158	158	Natural Gas	Combined Cycle	Committed	2011	

ΡΑ	State/ Province	Unit Name	Unit ID	PSSE Bus #	Installed Capacity (MW)	Dispatched Amount (MW)	Fuel Type	Generation Technology	Status	In-Service Year	Notes
ISO-NE	CT	KLEEN_S1	S1	122032	318	318	Natural Gas	Combined Cycle	Committed	2011	
ISO-NE	CT	MIDDLETWN_11	11	122045	112	0	Natural Gas	Gas Turbine	Committed	2011	
ISO-NE	CT	MIDDLETWN_12	12	122046	50	0	Natural Gas	Gas Turbine	Committed	2011	
ISO-NE	CT	MIDDLETWN_13	13	122047	50	0	Natural Gas	Gas Turbine	Committed	2011	
ISO-NE	CI	MIDDLETWN_14	14	122048	50	0	Natural Gas	Gas Turbine	Committed	2011	
ISO-NE	CT	MIDDLETWN_15 MEDIDEN.CT1	15 C1	122049	182	182	Natural Gas	Combined Cycle	Committee	2011	
ISO NE	СТ	MERIDEN GT1	C2	122310	182	182	Natural Gas	Combined Cycle	Committed	2012	
ISO-NE	CT	MERIDEN ST	S1	122311	170	170	Natural Gas	Combined Cycle	Committed	2012	
ISO-NE	CT	ANSONIA GEN	C1	123157	54.5	54.5	Natural Gas	Combined Cycle	Committed	2012	1
ISO-NE	RI	RIDGEWOOD LD	C1	117455	6.1	6.1	Landfill Gas	Combined Cycle	Committed	2012	
ISO-NE	RI	RIDGEWOOD LD	C2	117455	6.1	6.1	Landfill Gas	Combined Cycle	Committed	2012	
ISO-NE	RI	RIDGEWOOD LD	C3	117455	6.1	6.1	Landfill Gas	Combined Cycle	Committed	2012	
ISO-NE	RI	RIDGEWOOD LD	C4	117455	6.1	6.1	Landfill Gas	Combined Cycle	Committed	2012	
ISO-NE	RI	RIDGEWOOD LD	C5	117455	6.1	6.1	Landfill Gas	Combined Cycle	Committed	2012	
ISO-NE	RI	RIDGEWOOD LD	C6	117455	6.1	6.1	Landfill Gas	Combined Cycle	Committed	2012	
ISO-NE	RI	RIDGEWOOD LD	51	11/455	12.66	12.6	Landfill Gas	Steam Turbine	Committed	2012	
ISO-NE	ME	QP316-1_GI	5	103096	9.5	0	Natural Gas	Gas Turbine	Committed	2010	
ISO NE		QP276-1 EAST	1	109403	14	2.0	Wind	Wind Turbine	Committed	2012	
ISO-NE	MA	QP270-1 WE31	1	116472	40.3	0	Riomass	Steam Turbine	Committed	2012	
ISO-NE	MΔ	MATER CC	C3	110984	12.5	0	Natural Gas	Gas Turbine	Committed	2012	
ISO-NE	NH	0P251-1	1	104222	65.9	65.9	Biomass	Steam Turbine	Committed	2012	
ISO-NE	CT	QP207-1 CT1	C1	121033	168.4	168.4	Natural Gas	Combined Cycle	Committed	2014	
ISO-NE	CT	QP207-1_CT2	C2	121034	168.4	168.4	Natural Gas	Combined Cycle	Committed	2014	
ISO-NE	CT	QP207-1_ST	S1	121035	188.6	188.6	Natural Gas	Combined Cycle	Committed	2014	
ISO-NE	MA	QP174-1_CT	C3	116423	190.6	190.6	Natural Gas	Combined Cycle	Committed	2014	
ISO-NE	MA	QP174-1_ST	S3	116424	111	111	Natural Gas	Combined Cycle	Committed	2014	
ISO-NE	NH	Comerford Unit 2	2	106041	48.2	41	Water	Hydro Turbine	Committed	2011	Uprate to existing unit
ISO-NE	NH	Comerford Unit 3	3	106042	48.3	31	Water	Hydro Turbine	Committed	2012	Uprate to existing unit
ISO-NE	NH	Comerford Unit 4	4	106043	48.2	41	Water	Hydro Turbine	Committed	2013	Uprate to existing unit
ISO-NE	MA	Northfield Mountain Unit 1	1	116411	295	1/5	Water	Hydro Turbine	Committed	2014	Uprate to existing unit
ISO-NE	MA	Northfield Mountain Unit 2	2	116412	295	1/5	Water	Hydro Turbine	Committed	2012	Uprate to existing unit
ISO NE	MA	Northfield Mountain Unit 3	3	116413	290	175	Water	Hydro Turbine	Committed	2011	Uprate to existing unit
ISO-INL IEA	FI		30	404551	150	175	Natural Gas	Combustion Turbine	Committed	lune 1 2013	GEC - Creenland Energy Center
IFA	FI	GEC CT 2	30	404552	150	150	Natural Gas	Combustion Turbine	Committed	June 1, 2011	dec - Greenland Energy center
JEN				101002	100				- ·	54110 1, 2011	Heat Recovery Combined cycle
JEA	FL	GEC ST 3	30	404553	201	201	Waste Heat	Steam Turbine	Proposed	June 1, 2020	with
LGEE	КҮ	Estill Energy	1	324047	120	0	Coal	Steam Turbine	Committed	2013	IPP
MAPP	SD	WESSINGT	1	662101	51	0	Wind	Wind Turbine	Committed	6/1/2010	WAPA
MAPP	SD	SDPRAIRW	1	659296	151.5	42.1	Wind	Wind Turbine	Committed	12/31/2010	SD Prairie Wind 1, BEPC
MAPP	Manitoba	STJOS1 W	1	669831	151.2	30	Wind	Wind Turbine	Committed	12/31/2010	Letellier - St. Joseph
MAPP	Manitoba	STJOS2 W	1	669832	151.2	30	Wind	Wind Turbine	Committed	12/31/2010	Letellier - St. Joseph
MAPP	Manitoba	WUSK 1G	1	669765	74.3	66.7	Water	Hydro Turbine	Committed	12/31/2011	Wuskwatim Hydro
MAPP	Manitoba	WUSK 2G	2	669/66	74.3	66.7	Water	Hydro Turbine	Committed	12/31/2011	Wuskwatim Hydro
MAPP		WUSK 3G	3	450205	/4.3	200	Water	Hydro Turbine	Committed	1/1/2012	WUSKWatim Hydro
MAPP	Manitoha		1	669750	45	45	Water	Hydro Turbino	Droposed	6/30/2012	Kelsev Ungrades
MAPP	Manitoba	KELSETTO KELSEY2G	2	669751	45	45	Water	Hydro Turbine	Proposed	6/30/2012	Kelsey Ungrades
MAPP	Manitoba	KELSE 12G	3	669752	45	45	Water	Hydro Turbine	Proposed	6/30/2012	Kelsey Upgrades
MAPP	Manitoba	KELSEY4G	4	669753	45	45	Water	Hydro Turbine	Proposed	6/30/2012	Kelsey Upgrades
MAPP	Manitoba	KELSEY5G	5	669754	45	45	Water	Hydro Turbine	Proposed	6/30/2012	Kelsey Upgrades
MAPP	Manitoba	KELSEY6G	6	669755	45	45	Water	Hydro Turbine	Proposed	6/30/2012	Kelsey Upgrades
MAPP	Manitoba	KELSEY7G	7	669756	45	45	Water	Hydro Turbine	Proposed	6/30/2012	Kelsey Upgrades
MAPP	Manitoba	PINFLS1G	1	669778	16.7	16.7	Water	Hydro Turbine	Committed	12/31/2012	Pine Falls Unit upgrade
MAPP	Manitoba	PINFLS2G	2	669779	16.7	16.7	Water	Hydro Turbine	Committed	12/31/2012	Pine Falls Unit upgrade
MAPP	Manitoba	PINFLS3G	3	669780	18.4	18.4	Water	Hydro Turbine	Committed	12/31/2012	Pine Falls Unit upgrade
MAPP	Manitoba	PINFLS4G	4	669781	18.4	18.4	Water	Hydro furbine	Committed	12/31/2012	Pine Falls Unit upgrade
MAPP	Manitoba	PINELS5G	5	669782	16.5	16.5	vvater Water	Hydro Turbine	Committed	12/31/2012	Pine Falls Unit upgrade
MAPP	Manitoba	PIINFLS0G	0	660000	10.8 22 F	6.01 20	Water	Hydro Turbine	Dropost	5/1/2012	Pine Fails Unit upgrade
MAPP	Manitaba		2	660201	32.0 22.5	20	Water	Hydro Turbino	Proposed	7/1/2010	
MAPP MADD	Manitoba	POINTE3G		669802	32.5	30	Water	Hydro Turbine	Pronosed	9/1/2016	
MAPP	Manitoba	POINTE4G	4	669803	32.5	30	Water	Hydro Turbine	Pronosed	11/1/2016	
MAPP	Manitoba	KEEYASIG	1	669742	99.3	90	Water	Hydro Turbine	Proposed	12/31/2017	Gull/Keeyask Hvdro Plant
MAPP	Manitoba	KEEYAS2G	2	669743	99.3	90	Water	Hydro Turbine	Proposed	12/31/2017	Gull/Keeyask Hvdro Plant
MAPP	Manitoba	KEEYAS3G	3	669744	99.3	90	Water	Hydro Turbine	Proposed	12/31/2017	Gull/Keeyask Hydro Plant
MAPP	Manitoba	KEEYAS4G	4	669745	99.3	90	Water	Hydro Turbine	Proposed	12/31/2017	Gull/Keeyask Hydro Plant
MAPP	Manitoba	KEEYAS5G	5	669746	99.3	90	Water	Hydro Turbine	Proposed	12/31/2017	Gull/Keeyask Hydro Plant
MAPP	Manitoba	KEEYAS6G	6	669747	99.3	90	Water	Hydro Turbine	Proposed	12/31/2017	Gull/Keeyask Hydro Plant
MAPP	Manitoba	KEEYAS7G	7	669748	99.3	90	Water	Hydro Turbine	Proposed	12/31/2017	Gull/Keeyask Hydro Plant
MAPP	SD	NEXTGEN	1	659112	790	631	140-1	Mr. IT. II	Proposed		BEPC
MISO	OH	U2DAV-BE 345.00	1	238654	375.0	18.8	Wind	Wind Turbine	Proposed	2013	P2260
MISO	M	18MURPHY 345.00	N1	256500	500.0	25.0	Wind	Wind Turbine	Proposed		
MISU	MI	18PALISU 345.00	N1	200019	300.0 F00.0	17.5	Wind	Wind Turbing	Proposed	2015	D2140
MISO	M	19GRIVEC 345.00	N1	204700	500.0	25.U 25.0	Wind	Wind Turbine	Proposed	2015	P3168
MISO	111	17GKNLGF 343.00 1PR STATE G124.000	1	340120	895 D	20.0 895.0	Coal	Steam Turbine	Committed	2013	1 3 100
MISO	IL	1PR STATE G226.000	2	349130	895.0	895.0	Coal	Steam Turbine	Committed	2011	
MISO	MO	5ADAIR 161.00	N1	344001	300.0	15.0	Wind	Wind Turbine	Proposed	2014	P2248
MISO	IL IL	7DUCK CRK 345.00	N1	349661	375.0	18.8	Wind	Wind Turbine	Proposed	2016	P3022
MISO	WI	ATC_J084POI 69.000	N1	693561	100.0	5.0	Wind	Wind Turbine	Committed	2010	J084
MISO	IA	ATCHSN2W 0.6900	W2	635016	250.0	12.5	Wind	Wind Turbine	Committed		
MISO	SD	BRKNGCO3 345.00	N1	601031	200.0	10.0	Wind	Wind Turbine	Proposed	2015	P1203
MISO	WI	BWS RD G 0.5750	W	693568	105.0	5.3	Wind	Wind Turbine	Proposed		
MISO	MN	CHANRMB7 115.00	N1	603180	500.0	25.0	Wind	Wind Turbine	Proposed	2015	P1203
MISO	WI	ECOMET WTG1 12.000	W	693692	49.5	2.5	Wind	Wind Turbine	Committed	2012	

Bits One One One One One One Number Num	РА	State/ Province	Unit Name	Unit ID	PSSE Bus #	Installed Capacity (MW)	Dispatched Amount (MW)	Fuel Type	Generation Technology	Status	In-Service Year	Notes
MODE MAI MUDE Main Mundam Mundam Multiple	MISO	WI	ECOMET WTG2 12.000	W	693694	51.0	2.6	Wind	Wind Turbine	Committed	2012	
MIG MA PC-100 MA MA MAA MAA MAAA MAAA MAAA MAAA MAAA MAAA MAAA MAAA MAAA MAAAA MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	MISO	WI	ECOMONT WTG 12.000	W	693565	50.0	10.0	Wind	Wind Turbine	Committed	2012	
Math. Number of the state of t	MISO	MN	EXCLSRG1 18.000	1	608619	234.0	197.0	Coal		Committed	2010	G519 suspended
Sec. Or. Part of the sec. Part of the sec. Control of the sec. <thcontrol of="" sec.<="" th="" the=""></thcontrol>	MISO	MN	EXCLSRG2 18.000	2	608620	234.0	197.0	Coal		Committed	2010	G519 suspended
Since No. No. </td <td>MISO</td> <td>MN</td> <td>EXCLSRG3 18.000</td> <td>3</td> <td>608621</td> <td>250.0</td> <td>209.1</td> <td>Coal</td> <td></td> <td>Committed</td> <td>2010</td> <td>G519 suspended</td>	MISO	MN	EXCLSRG3 18.000	3	608621	250.0	209.1	Coal		Committed	2010	G519 suspended
No. AL Oxfart (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	MISO	WI	GLR HL WTG1 0.6900	W	693698	99.0	5.0	Wind	Wind Turbine	Committed	2011	
Mice Hit Set Light (198-36) J <thj< th=""> J <thj< th=""> <thj< th=""></thj<></thj<></thj<>	MISO	WI	GLR HL WTG2 0.6900	W	693722	150.0	30.0	Wind	Wind Turbine	Committed	2011	
MBD MD CPU and CPU an	MISO	MN	GRE-MAPLE 1G69.000	1	615070	29.4	19.2	Oil	Combustion Turbine	Committed		
MBO 00 00 model 00 2021	MISO	WI	GRNL WTG 0.5750	W	693556	160.0	8.0	Wind	Wind Turbine	Proposed		
Biology Biology Display Display <t< td=""><td>MISO</td><td>WI</td><td>J079_80 138.00</td><td>N1</td><td>927513</td><td>24.0</td><td>1.2</td><td>Wind</td><td>Wind Turbine</td><td>Committed</td><td>2011</td><td>J079, Withdrawn</td></t<>	MISO	WI	J079_80 138.00	N1	927513	24.0	1.2	Wind	Wind Turbine	Committed	2011	J079, Withdrawn
Sector 1 1 0.000 10000 1000 10000	MISO	WI	LAKBRZ G 0.6900	W	693584	98.0	4.9	Wind	Wind Turbine	Committed	2013	
NBD DB LEGEN De OPD10 Des Des<	MISO	WI	LDGE WD WTG 0.6900	W	693642	150.0	7.5	Wind	Wind Turbine	Committed	2013	D0011
NSD NM Differ P 2012 0.00 P 0.001	MISO	IA	LEHIGH 3 345.00	IN I M/	600110	500.0	25.0	Wind	Wind Turbine	Proposed	2015	P3211
NO. M. K.S. 14. MALLAGE N. M. W. W. T. Three Description J. Proceeding J. Proceeding <thj. proceeding<="" th=""> <thj. proceeding<="" th=""></thj.></thj.>	MISO	MN	MERRICI IG 0.5750	W	600119	50.0	2.5	Wind	Wind Turbine	Committed	2011	C250
NR0 NR	MISO	IVIN	MERRICI 2G 0.5750	W	600120	50.0	2.5	Wind	Wind Turbine	Committed	2011	G339 C250
9900 N. NO. 10. 9010 20.0 Prior Pri	MISO	MI	MLC STA 345345.00	N1	700306	500.0	25.0	Wind	Wind Turbine	Proposed	2011	P3168
MAGE W. Mol [13] Sign NI Were Were Were Were Description Description Description MSG W. G. [1 89] LOBO W. Were Version Commits Description MSG W. G. [1 89] LOBO W. Were	MISO	MI	MI-D STA 345345.00	N1	700307	500.0	25.0	Wind	Wind Turbine	Proposed	2015	P3168
M32 With CLT BWILL 6000 W PMPPP PA2 1.1 PMPL	MISO	WI	NoM 138 138.00	N1	699036	500.0	25.0	Wind	Wind Turbine	Proposed	2018	P3127
HSD W Control Links Even Model Work Work in Links Committed All 1 HSD W Dil H ML 6000 W 64962 21.0 11.5 Work in Links Committed 21.1 HSD W Dil H ML 6000 W 64962 22.0 11.5 Work in Virtues Committed 21.1 HSD W Dil H ML 6000 W 64968 28.7 4.7 4.6 Work in Virtues Committed 21.1 HSD W Dil H ML 6000 WI HSD Work in Virtues Parcent 21.8 Work in Virtues Parcent 21.9 Parcent	MISO	WI	QLT B W1 0.6000	W	698979	25.2	1.3	Wind	Wind Turbine	Committed	2013	
MBO W DUL W PARCE	MISO	WI	QLT B W2 0.6000	W	699839	25.2	1.3	Wind	Wind Turbine	Committed	2013	
MSD W Der Ling W Percent Committee	MISO	WI	QLT B W3 0.6000	W	699862	25.2	1.3	Wind	Wind Turbine	Committed	2013	
MSD M. M. M. ASD Word Wird Wird <td>MISO</td> <td>WI</td> <td>QLT B W4 0.6000</td> <td>W</td> <td>699863</td> <td>23.1</td> <td>1.2</td> <td>Wind</td> <td>Wind Turbine</td> <td>Committed</td> <td>2013</td> <td></td>	MISO	WI	QLT B W4 0.6000	W	699863	23.1	1.2	Wind	Wind Turbine	Committed	2013	
MISO W. 6988 937 4.9 West West West Commits Commits Dots MISO M. 6455170 Mill 60110 5000 20.0 P211 MISO M. MAES100 61.00 110 5000 Number 100 P211 MISO M. MAES100 61.00 110 5000 Number 100 P211 MISO M. MATS100 110 5000 Number 100 P2010 P2010 MISO M. MATS100 110 100 Number 100 P2010	MISO	IA	RLHILLSW 0.5750	W1	635102	250.0	12.5	Wind	Wind Turbine	Committed		
MBG0 MA Wind Large Page and Large Page and Pag	MISO	WI	STONYBRK WTG0.6000	W	693688	98.7	4.9	Wind	Wind Turbine	Committed	2012	
MBSD MM MM MM MM MM MM MMM MMMM MMM MMMM MMMM MMMM	MISO	IA	WEBSTER3 345.00	N1	636000	300.0	25.0	Wind	Wind Turbine	Proposed	2015	P3211
MASO Wit Letter Part Base 1 SP13 SUB J Z.0 Wind Wind Wind Part Base MASO Wit With All SG 2010 W Hold 2010 Mark Part Base Part	MISO	MN	JHNDEER1W 0.5750	W	600122	8.0	0.4	Wind	Wind Turbine	Committed	0.517	
Biblio Biblio Low Particle Control Difference Control Difference C	MISO	MN	LAKEFLD3 345.00	N1	631138	500.0	25.0	wind	Wind Turbine	Proposed	2015	P3213
Battor International Labor Particle Database	MISO	WI	Point Beach		699434	617.06	617.06	Nuclear	Steam Turbine	Committed	2011	uprate capacity by 123 MW
n1100 n11 n1011 n10111 n1011 n1011	MISO	WI	Point Beach	2	699435	617.06	617.06	Nuclear	Steam Turbine	Committed	2011	uprate capacity by 113 MW
mixed mixed <th< td=""><td>NYISO</td><td>NY NV</td><td>BALLHLIG 0.5750</td><td>W</td><td>146013</td><td>10 5</td><td>10.5</td><td>Wind</td><td>Wind Turbing</td><td>Proposed</td><td>2011</td><td></td></th<>	NYISO	NY NV	BALLHLIG 0.5750	W	146013	10 5	10.5	Wind	Wind Turbing	Proposed	2011	
NYDO NV Rel14,42 0.570 Wild Wild Wild Proposed 2011 NYDO NV Bull 145,6 0.570 W 146018 10.5 0 Wind Wind Wind Proposed 2011 NYDO NV Bull 145,6 0.576 W 146018 10.5 0 Wind Wind Proposed 2011 NYDO W Bull 145,0 0.576 W 14607 10.5 0 Wind Wind Proposed 2011 NYDO W Bull 145,0 0.570 W 14607 10.5 0 Wind Wind Proposed 2011 NYDO W Bull 145,0 0.570 W 10.6 0 Bull 145,0 0 10.1	NYISO		BALLHL2G 0.5750	W	140014	10.5	10.5	Wind	Wind Turbine	Proposed	2011	
Inviso MV Bull Like 0.5760 WI 1987 UV Wird Wird Wird Proposal 2011 NYSO MV Bull Like 0.5760 WI 16017 10 Wird Wird Wird Wird Wird Wird Wird Wird Wird 2011 NYSO WI Bull Like 0.5760 WI 16017 0 Wird Wird Wird Wird Proposal 2011 NYSO WI Bull Like 0.5760 WI 16017 0 Wird Wird Proposal 2011 NYSO WI Bor Clair 1.800 3 12824 64 0 Natural Clos Combined Cybe	NVISO	NV	BALLHLAG 0.5750	W	146015	12	0	Wind	Wind Turbine	Proposed	2011	
MYSO W Bull-Back Display W H4008 IOS O Weak	NYISO	NY	BALLHI 5G 0.5750	W	146017	10.5	0	Wind	Wind Turbine	Proposed	2011	
Inviso IV Bull.LBC 5:59 W 14609 1/2 0 Wrd Wind Progend 2011 NYSO WV Bull.LBC 5:59 W 146071 105 0 Wind Wind Turbine Progend 2011 NYSO WV Bull.LBC 5:59 W 146071 105 0 Wind Wind Turbine Progend 2011 NYSO WV Bull.LBC 5:59 44 0 Matal Gis Commided Cysis Commided 2011 NYSO WV Bull.CBC 5:57 44 0 Matal Gis Commided 2011 Commided 2011 NYSO WV Bull.CBC 5:57 44 0 Matal Gis Commided Cysis Commided 2011 NYSO WV Bull.CBC 5:57 44 0 Matal Gis Commided Cysis Commided 2011 NYSO WV Bull.CBC 5:57 13800 7 72826 64 0 Batar Gis Cornied Cysis Commided 2011 NYSO MV Bull.CBC 5:57 <td>NYISO</td> <td>NY</td> <td>BALLHLOG 0.5750</td> <td>W</td> <td>146018</td> <td>10.5</td> <td>0</td> <td>Wind</td> <td>Wind Turbine</td> <td>Proposed</td> <td>2011</td> <td></td>	NYISO	NY	BALLHLOG 0.5750	W	146018	10.5	0	Wind	Wind Turbine	Proposed	2011	
INYSO IV BALLEAG 0.575 W 14600 115. 0 Wind Wind Tubble Progoad 2011 NYSO W BALLEAG 6.579 W 14001 15.5 0 Wind Wind Tubble Progoad 2011 NYSO W BAV_LSLZ 13800 1 12823 64 0 Matar Gas Commided Cybe Commided 2011 NYSO W BAV_LSLZ 13800 5 12824 64 0 Matar Gas Commided Cybe Commided 2011 NYSO WY BAV_LSAG 13800 6 12825 64 0 Matar Gas Commided Cybe Commided 2011 NYSO WY BAV_LSAG 13800 8 12825 64 0 Matar Gas Commided Cybe Commided 2011 NYSO WY BAV_LSAG 13800 8 12825 0 Wind Wind Linble Progoad 2015 NYSO WY GASTO_26	NYISO	NY	BALLHL7G 0.5750	W	146019	12	0	Wind	Wind Turbine	Proposed	2011	
INYSO IV BALLIAGS 0.5750 W 14001 10.5 0 Wind Wind Vind Word Word Commend Optic 2011 NYSO W BAV_S162 13800 2 170/53 64 0 Natura Giss Commend Optic Commend Optic 2011 NYSO W BAV_S164 13800 5 12825 64 0 Natura Giss Commend Optic 2011 NYSO W BAV_S564 13800 5 12825 64 0 Natura Giss Commend Optic 2011 NYSO W BAV_S564 13800 7 12825 64 0 Natura Giss Commend Optic 2011 NYSO W BAV_S614 31800 7 12825 64 0 Natura Giss Commend Optic 2011 NYSO W OSIS 0.6 5159 W 13470 224 0 Wind Wind Turke Preposed 2015 <t< td=""><td>NYISO</td><td>NY</td><td>BALLHL8G 0.5750</td><td>W</td><td>146020</td><td>10.5</td><td>0</td><td>Wind</td><td>Wind Turbine</td><td>Proposed</td><td>2011</td><td></td></t<>	NYISO	NY	BALLHL8G 0.5750	W	146020	10.5	0	Wind	Wind Turbine	Proposed	2011	
INYEO W BAY, G12 11 12023 64 0 Nataral Gas Contributed Cycle Contributed 2011 NYSO W BAY, G124 13800 3 12823 64 0 Nataral Gas Contributed Cycle Contributed Cycle <t< td=""><td>NYISO</td><td>NY</td><td>BALLHL9G 0.5750</td><td>W</td><td>146021</td><td>10.5</td><td>0</td><td>Wind</td><td>Wind Turbine</td><td>Proposed</td><td>2011</td><td></td></t<>	NYISO	NY	BALLHL9G 0.5750	W	146021	10.5	0	Wind	Wind Turbine	Proposed	2011	
INYSO W BAY, CIL2 13.800 2 12.213 64 0 Natural Gisc Contined Cycle Contined 2011 NYSO W BAY, CSAL 13.800 4 12254 64 0 Natural Gisc Contined Cycle Contined 2011 NYSO W BAY, CSAL 13.800 6 12254 64 0 Natural Gisc Contined Cycle Contined 2011 NYSO W BAY, CSAL 13.800 6 12256 64 0 Natural Gisc Contined Cycle Contined 2011 NYSO W AW, CSAL 13.800 12.3226 64 0 Natural Gisc Contined Cycle Contined 2011 NYSO W OKTO, G. 0.5760 W 13.478 2.5 0 Wind Wind Gisc Proposed 2015 NYSO W CisTO, S.6 0.5700 W 13.478 2.4 0 Wind Wind Gisc Proposed 2015<	NYISO	NY	BAY_G1&2 13.800	1	128253	64	0	Natural Gas	Combined Cycle	Committed	2011	
INYES INY BAY, GSA 13.800 3 12.8214 6.4 0 Natural Gas Combined Cycle Committed 2011 INYES INY BAY, GSA 13.800 5 12.8255 6.4 0 Natural Gas Combined Cycle Committed 2011 INYES INY BAY, GSA 13.800 7 12.8255 6.4 0 Natural Gas Combined Cycle Committed 2011 INYES INY BAY, GSA 13.800 7 12.8256 6.4 0 Natural Gas Combined Cycle Committed 2011 INYES INY BAY, GSA 13.810 7 12.8255 0 Wind Gas Wind Gas Wind Gas Wind Gas 2015 12.9111 12.911 12.911<	NYISO	NY	BAY_G1&2 13.800	2	128253	64	0	Natural Gas	Combined Cycle	Committed	2011	
NYTSD NY BAY_GSA 13800 4 12825 64 0 Natural Case Combined Cycle Committed 2011 NYTSD NY BAY_GSA 13800 6 12825 64 0 Natural Case Committed Cycle C	NYISO	NY	BAY_G3&4 13.800	3	128254	64	0	Natural Gas	Combined Cycle	Committed	2011	
NY D0 NY Dev Os6 1 Add2 64 0 Pathaf AG Commited Cybe Commi	NYISO	NY	BAY_G3&4 13.800	4	128254	64	0	Natural Gas	Combined Cycle	Committed	2011	
INTRO IV BM Case 13800 0 12650 64 0 Neutral Case Controlled by Vac Controled by Vac Controled by Vac Cot	NYISO	NY	BAY_G5&6 13.800	5	128255	64	0	Natural Gas	Combined Cycle	Committed	2011	
Initial Initial <t< td=""><td>NYISO</td><td>IN Y NIX</td><td>BAY_G5&6 13.800</td><td>0</td><td>128200</td><td>64</td><td>0</td><td>Natural Cas</td><td>Combined Cycle</td><td>Committed</td><td>2011</td><td></td></t<>	NYISO	IN Y NIX	BAY_G5&6 13.800	0	128200	64	0	Natural Cas	Combined Cycle	Committed	2011	
INVS INV INV INVS INVS INV INVS INVS INV INVS INV INVS INVS INV INVS INVS INV INVS	NVISO	NV	BAY C788 13.800	8	128256	64	0	Natural Gas	Combined Cycle	Committed	2011	
INVSD INV CINSTD 20: 0.5750 W 134781 25.5 0 Wnd Wnd Weid Turbine Progoed 2015 NYSD NV CINSTD 3: 0.5750 W 134783 25.5 0 Wnd Weid Turbine Progoed 2015 NYSD NV CINSTD 5: 0.55750 W 134784 25.5 0 Wnd Weid Turbine Progoed 2015 NYSD NV CINSTD 6: 0.55750 W 134784 24. 0 Wnd Weid Turbine Progoed 2015 NYSD NV ECOCERLSWT2 40900 W 13108 23 23. Wnd Wml Turbine Progoed 2010 NYSD NV ECOCERLSWT2 40900 W 13106 23 23. Wnd Wml Turbine Progoed 2010 NYSD NV FRELD C2: 0.6900 W 13704 24 24. Wnd Wml Turbine Progoed 2010 <	NYISO	NY	CNSTO 1G 0.5750	Ŵ	134780	24	0	Wind	Wind Turbine	Proposed	2015	
NYSO NY CNST0 3G 0.5750 W 131782 25.5 0 Wnd Wnd Turnie Proposed 2015 NYSO NY CNST0 5G 0.5750 W 13178 25.5 0 Wnd Wnd Turnie Proposed 2015 NYSO NY CNST0 5G 0.5750 W 131785 24 0 Wnd Wnd Turnie Proposed 2015 NYSO NY CCGEN,SW110.4000 W 13176 23 23 Wnd Wnd Turnie Proposed 2010 NYSO NY ECOGEN,SW13.04000 W 13116 23 23 Wnd Wnd Turnie Proposed 2010 NYSO NY FRELQ G1.04000 W 13170 23 23 Wnd Wnd Turnie Proposed 2010 NYSO NY FRELQ G1.04000 W 137070 26 26 Wnd Wnd Turnie Proposed 2015	NYISO	NY	CNSTO 2G 0.5750	W	134781	25.5	0	Wind	Wind Turbine	Proposed	2015	
NYSO NY CNSTO, 4G, 65750 W 13/178 255 0 Wnd Wnd <	NYISO	NY	CNSTO_3G 0.5750	W	134782	25.5	0	Wind	Wind Turbine	Proposed	2015	
NYSO NY CNSTO_SG 0.5750 W 134784 25.5 0 Wind Wind Proposed 2015 NYSO NY CNSTO_GE 0.5750 W 134785 24 0 Wind Wind Turbine Proposed 2015 NYSO NY ECOCEN_SWT10.6900 W 131166 23 23 Wind Wind Turbine Proposed 2010 NYSO NY ECOCEN_SWT10.6900 W 131166 23 23 Wind Wind Turbine Proposed 2010 NYSO NY ECOCEN_SWT14.0900 W 137068 24 24 Wind Wind Turbine Proposed 2010 NYSO NY FRELQ.62 0.6900 W 137070 26 26 Wind Wind Turbine Proposed 2010 NYSO NY HOUNSFIG 0.6900 W 148978 26.4 0 Wind Wind Turbine Proposed 2015 NYSO NY	NYISO	NY	CNSTO_4G 0.5750	W	134783	25.5	0	Wind	Wind Turbine	Proposed	2015	
INYSO NY CNSTO 46 0.5750 W 13/4785 2/4 0 Wind Wind Proposed 2015 INYSO NY ECOCEN, SWT10.6900 W 13/165 23 23 Wind Wind Turbine Proposed 2010 INYSO NY ECOCEN, SWT10.6900 W 13/165 23 23 Wind Wind Turbine Proposed 2010 INYSO NY ECOCEN, SWT10.6900 W 13/167 23 23 Wind Wind Turbine Proposed 2010 INYSO NY FERLO, C1 0.4900 W 13/3069 24 24 Wind Wind Turbine Proposed 2010 INYSO NY FERLO, C3 0.4900 W 13/3069 26.4 0 Wind Wind Turbine Proposed 2010 INYSO NY HOURSYEG 0.4900 W 14/9877 26.4 0 Wind Wind Turbine Proposed 2015 INYSO	NYISO	NY	CNSTO_5G 0.5750	W	134784	25.5	0	Wind	Wind Turbine	Proposed	2015	
NYSO NY ECOCER_SVIT 0.6900 W 130898 9.2 9.2 Wind Wind Wind Turbine Proposed 2010 NYSO NY ECOCER_SVIT 0.6900 W 131166 23 23 Wind Wind Turbine Proposed 2010 NYSO NY ECOCER_SVIT 0.6900 W 131766 23 23 Wind Wind Turbine Proposed 2010 NYSO NY FECLO G1 0.6900 W 137068 24 24 Wind Wind Turbine Proposed 2010 NYSO NY FERLD G3 0.6900 W 137070 26 26 Wind Wind Turbine Proposed 2015 NYSO NY HOUISFIG 66900 W 148978 26.4 0 Wind Wind Turbine Proposed 2015 NYSO NY HOUISFIG 6.900 W 148981 26.4 0 Wind Wind Turbine Proposed 2015 11	NYISO	NY	CNSTO_6G 0.5750	W	134785	24	0	Wind	Wind Turbine	Proposed	2015	
INYSO NY ECOCERL_SVT2 0.6900 W 131165 2.3 2.3 Wind Wind rubine Proposed 2010 INYSO NY ECOCERL_SVT3 0.6900 W 131167 2.3 2.3 Wind Wind Turbine Proposed 2010 INYSO NY FERLD, G1 0.6900 W 137068 2.4 2.4 Wind Wind Turbine Proposed 2010 INYSO NY FERLD, G2 0.6900 W 137069 2.4 2.4 Wind Wind Turbine Proposed 2010 INYSO NY FERLD, G2 0.6900 W 148978 2.6.4 0 Wind Wind Turbine Proposed 2015 INYSO NY HOUNSF3.6 0.6900 W 148979 2.6.4 0 Wind Wind Turbine Proposed 2015 INYSO NY HOUNSF3.6 0.6900 W 148982 2.6.4 0 Wind Wind Turbine Proposed 2015 <td>NYISO</td> <td>NY</td> <td>ECOGEN_SWT1 0.6900</td> <td>W</td> <td>130898</td> <td>9.2</td> <td>9.2</td> <td>Wind</td> <td>Wind Turbine</td> <td>Proposed</td> <td>2010</td> <td></td>	NYISO	NY	ECOGEN_SWT1 0.6900	W	130898	9.2	9.2	Wind	Wind Turbine	Proposed	2010	
NYISO NY ECOGEN_SWI3 0.4900 W 131166 23 23 Wind Wind Turkine Proposed 2010 NYISO NY ECOGEN_SWI4 0.4900 W 13106 23 23 Wind Wind Turkine Proposed 2010 NYISO NY FRFLD_G1 0.6900 W 13700 26 23 Wind Wind Turkine Proposed 2010 NYISO NY FRFLD_G1 0.6900 W 137070 26 26 Wind Wind Turkine Proposed 2010 NYISO NY HOUNSF1G 0.6900 W 148978 28.4 0 Wind Wind Turkine Proposed 2015 NYISO NY HOUNSF2G 0.6900 W 148981 26.4 0 Wind Wind Turkine Proposed 2015 NYISO NY HOUNSF4G 0.6400 W 148981 26.4 0 Wind Wind Turkine Proposed 2015 NYISO NY HOUNSF4G 0.6400	NYISO	NY	ECOGEN_SWT2 0.6900	W	131165	23	23	Wind	Wind Turbine	Proposed	2010	
NYISD NY EUGLEN_SWI416400 W 13/167 2/3 Wind Wind Wind Proposed 2010 NYISD NY FRFLD_G1 0.6900 W 13/706 2/4 2/4 Wind Wind Proposed 2010 NYISD NY FRFLD_G2 0.6900 W 13/706 2/6 2/6 Wind Wind Proposed 2010 NYISD NY HOUNSIG 0.6900 W 14/978 2/6 0 Wind Wind Proposed 2015 NYISD NY HOUNSFIG 0.6900 W 14/978 2/6.4 0 Wind Wind Proposed 2015 NYISD NY HOUNSFIG 0.6900 W 14/978 2/6.4 0 Wind Wind Proposed 2015 NYISO NY HOUNSFIG 0.6900 W 14/9781 2/6.4 0 Wind Wind Turine Proposed 2015	NYISO	NY	ECOGEN_SWT3 0.6900	W	131166	23	23	Wind	Wind Turbine	Proposed	2010	
NYISD NY FRELD G1 0.0400 W 137069 24 24 Wind Wind Proposed 2010 NYISD NY FRELD G3 0.6900 W 137069 24 24 Wind Wind Turbine Proposed 2010 NYISD NY FRELD G3 0.6900 W 137070 26 26 Wind Wind Turbine Proposed 2015 NYISD NY HOUNSF16 0.6900 W 148978 26.4 0 Wind Wind Turbine Proposed 2015 NYISD NY HOUNSF16 0.6900 W 148978 26.4 0 Wind Wind Turbine Proposed 2015 NYISD NY HOUNSF16 0.6900 W 148980 26.4 0 Wind Wind Turbine Proposed 2015 NYISD NY HOUNSF16 0.6900 W 148982 26.4 0 Wind Wind Turbine Proposed 201	NYISO	NY	ECOGEN_SW14 0.6900	W	13116/	23	23	Wind	Wind Turbine	Proposed	2010	
Initial Initial <t< td=""><td></td><td>NY NV</td><td>ERELD C2 0.4000</td><td>VV \\/</td><td>137060</td><td>24</td><td>24</td><td>Wind</td><td>Wind Turbine</td><td>Proposed</td><td>2010</td><td></td></t<>		NY NV	ERELD C2 0.4000	VV \\/	137060	24	24	Wind	Wind Turbine	Proposed	2010	
Integer Integer <t< td=""><td></td><td>NIV NIV</td><td>FREID G3 0.6900</td><td>W</td><td>137009</td><td>24</td><td>24</td><td>Wind</td><td>Wind Turbine</td><td>Proposed</td><td>2010</td><td></td></t<>		NIV NIV	FREID G3 0.6900	W	137009	24	24	Wind	Wind Turbine	Proposed	2010	
Integer Integer <t< td=""><td>NYISO</td><td>NY</td><td>HOUNSING 0 6900</td><td>W</td><td>148987</td><td>28.8</td><td>0</td><td>Wind</td><td>Wind Turbine</td><td>Proposed</td><td>2010</td><td></td></t<>	NYISO	NY	HOUNSING 0 6900	W	148987	28.8	0	Wind	Wind Turbine	Proposed	2010	
NYISO NY HOUNSF20 GA900 W 148979 26.4 0 Wind Wind Wind Proposed 2015 NYISO NY HOUNSF20 64900 W 148980 26.4 0 Wind Wind Turbine Proposed 2015 NYISO NY HOUNSF26 6.6900 W 148981 26.4 0 Wind Wind Turbine Proposed 2015 NYISO NY HOUNSF26 6.6900 W 148981 26.4 0 Wind Wind Turbine Proposed 2015 NYISO NY HOUNSF26 6.6900 W 148985 26.4 0 Wind Wind Turbine Proposed 2015 NYISO NY HOUNSF26 6.6900 W 148986 26.4 0 Wind Wind Turbine Proposed 2015 NYISO NY HOUNSF26 6.6900 W 131350 7.5 7.5 Wind Wind Turbine Propo	NYISO	NY	HOUNSF1G 0.6900	Ŵ	148978	26.4	0	Wind	Wind Turbine	Proposed	2015	
NYISO NY HOUNSF3G 0.6900 W 148980 26.4 0 Wind Wind Iund Proposed 2015 NYISO NY HOUNSF3G 0.6900 W 144981 26.4 0 Wind Wind Turbine Proposed 2015 NYISO NY HOUNSF3G 0.6900 W 144983 26.4 0 Wind Wind Turbine Proposed 2015 NYISO NY HOUNSF3G 0.6900 W 144984 26.4 0 Wind Wind Turbine Proposed 2015 NYISO NY HOUNSF3G 0.6900 W 148986 26.4 0 Wind Wind Turbine Proposed 2015 NYISO NY HOWD_C93, G1.6900 W 131363 27.5 27.5 Wind Wind Turbine Proposed 2010 NYISO NY HOWD_C93, G1.6900 W 131464 27.5 27.5 Wind Wind Turbine Proposed 20	NYISO	NY	HOUNSF2G 0.6900	W	148979	26.4	0	Wind	Wind Turbine	Proposed	2015	
NYISO NY HOUNSF4G 0.6900 W 148981 26.4 0 Wind Wind Turbine Proposed 2015 NYISO NY HOUNSFG 0.6900 W 148982 28.8 0 Wind Wind Turbine Proposed 2015 NYISO NY HOUNSFG 0.6900 W 148983 26.4 0 Wind Wind Turbine Proposed 2015 NYISO NY HOUNSFG 0.6900 W 148985 26.4 0 Wind Wind Turbine Proposed 2015 NYISO NY HOUNSFG 0.6900 W 148986 26.4 0 Wind Wind Turbine Proposed 2015 NYISO NY HOUNS-GG 0.6900 W 131350 7.5 7.5 Wind Wind Turbine Proposed 2010 NYISO NY HOWD_C93_G1 0.6900 W 131654 27.5 27.5 Wind Wind Turbine Proposed 2010 NYISO NY HRTVL_1G <t< td=""><td>NYISO</td><td>NY</td><td>HOUNSF3G 0.6900</td><td>W</td><td>148980</td><td>26.4</td><td>0</td><td>Wind</td><td>Wind Turbine</td><td>Proposed</td><td>2015</td><td></td></t<>	NYISO	NY	HOUNSF3G 0.6900	W	148980	26.4	0	Wind	Wind Turbine	Proposed	2015	
NYISO NY HOUNSFEG 0.4890 W 148982 28.8 0 Wind Wind Wind Wind Proposed 2015 NYISO NY HOUNSFEG 0.6490 W 148983 26.4 0 Wind Wind Proposed 2015 NYISO NY HOUNSFEG 0.6490 W 148985 26.4 0 Wind Wind Proposed 2015 NYISO NY HOUNSFEG 0.6900 W 148985 26.4 0 Wind Wind Tubine Proposed 2015 NYISO NY HOUNSFGG 0.6900 W 13153 27.5 7.5 Wind Wind Turbine Proposed 2010 NYISO NY HOWD_C93_G3 0.6900 W 131654 27.5 27.5 Wind Wind Turbine Proposed 2014 NYISO NY HRTVL_G 0.6900 W 134769 13.8 13.8 Wind Win	NYISO	NY	HOUNSF4G 0.6900	W	148981	26.4	0	Wind	Wind Turbine	Proposed	2015	
NYISO NY HOUNSF&G 0.6900 W 148983 26.4 0 Wind Wind Turbine Proposed 2015 NYISO NY HOUNSF&G 0.6900 W 148984 26.4 0 Wind Wind Turbine Proposed 2015 NYISO NY HOUNSF&G 0.6900 W 148985 26.4 0 Wind Wind Turbine Proposed 2015 NYISO NY HOWDSF&G 0.6900 W 148986 26.4 0 Wind Wind Turbine Proposed 2015 NYISO NY HOWD_C93_G2 0.6900 W 131653 27.5 27.5 Wind Wind Turbine Proposed 2010 NYISO NY HRVD_C93_G3 0.6900 W 131654 27.5 27.5 Wind Wind Turbine Proposed 2010 NYISO NY HRTV_1G 0.6900 W 134769 13.8 13.8 Wind Wind Turbine Proposed 2014 NYISO NY	NYISO	NY	HOUNSF5G 0.6900	W	148982	28.8	0	Wind	Wind Turbine	Proposed	2015	
NYISO NY HOUNSF7G 0.6900 W 148984 26.4 0 Wind Wind Turbine Proposed 2015 NYISO NY HOUNSF8G 0.6900 W 148986 26.4 0 Wind Wind Turbine Proposed 2015 NYISO NY HOWD_C93_G10.6900 W 131350 7.5 7.5 Wind Wind Turbine Proposed 2010 NYISO NY HOWD_C93_G3 0.6900 W 131653 27.5 27.5 Wind Wind Turbine Proposed 2010 NYISO NY HOWD_C93_G3 0.6900 W 131654 27.5 27.5 Wind Wind Turbine Proposed 2010 NYISO NY HRIVL_G 0.6900 W 134768 18.4 18.4 Wind Wind Turbine Proposed 2014 NYISO NY HRIVL_3G 0.6900 W 134769 18.4 18.4 Wind Wind Turbine Proposed 2014 NYISO	NYISO	NY	HOUNSF6G 0.6900	W	148983	26.4	0	Wind	Wind Turbine	Proposed	2015	
NYISO NY HOUNSF8G 0.6900 W 148985 26.4 0 Wind Wind Turbine Proposed 2015 NYISO NY HOUNSF9G 0.6900 W 148986 26.4 0 Wind Wind Turbine Proposed 2015 NYISO NY HOWD_C93_G2 0.6900 W 131350 7.5 7.5 Wind Wind Turbine Proposed 2010 NYISO NY HOWD_C93_G3 0.6900 W 131653 27.5 27.5 Wind Wind Turbine Proposed 2010 NYISO NY HOWD_C93_G3 0.6900 W 131654 27.5 27.5 Wind Wind Turbine Proposed 2010 NYISO NY HRTVL_2G 0.6900 W 134768 18.4 18.4 Wind Wind Turbine Proposed 2014 NYISO NY HRTVL_3G 0.6900 W 134855 19.8 Wind Wind Turbine Proposed 2011 NYISO NY	NYISO	NY	HOUNSF7G 0.6900	W	148984	26.4	0	Wind	Wind Turbine	Proposed	2015	
NYISO NY HOUNSF9G 0.6900 W 149986 26.4 0 Wind Wind Turbine Proposed 2015 NYISO NY HOWD_C93_G1 0.6900 W 131350 7.5 7.5 Wind Wind Turbine Proposed 2010 NYISO NY HOWD_C93_G3 0.6900 W 131653 27.5 27.5 Wind Wind Turbine Proposed 2010 NYISO NY HOWD_C93_G3 0.6900 W 131654 27.5 27.5 Wind Wind Turbine Proposed 2010 NYISO NY HOWD_C93_G 0.6900 W 134769 13.8 13.8 Wind Wind Turbine Proposed 2014 NYISO NY HRTVL_2G 0.6900 W 134770 18.4 18.4 Wind Wind Turbine Proposed 2014 NYISO NY HRTVL_2G 0.6900 W 131865 19.8 Wind Wind Turbine Proposed 2011 NYISO NY	NYISO	NY	HOUNSF8G 0.6900	W	148985	26.4	0	Wind	Wind Turbine	Proposed	2015	
NYISO NY HOWD_C93_G10.6400 W 131353 7.5 7.5 Wind Wind Proposed 2010 NYISO NY HOWD_C93_G20.6900 W 131653 27.5 27.5 Wind Wind Turbine Proposed 2010 NYISO NY HOWD_C93_G30.6900 W 131654 27.5 27.5 Wind Wind Turbine Proposed 2010 NYISO NY HRTVL_1G 0.6900 W 134768 18.4 18.4 Wind Wind Turbine Proposed 2014 NYISO NY HRTVL_3G 0.6900 W 134769 13.8 13.8 Wind Wind Turbine Proposed 2014 NYISO NY HRTVL_3G 0.6900 W 134769 18.4 18.4 Wind Wind Turbine Proposed 2014 NYISO NY JRCHO_1G 0.6900 W 131865 19.8 Wind Wind Turbine Proposed 2011 NYISO </td <td>NYISO</td> <td>NY</td> <td>HOUNSF9G 0.6900</td> <td>W</td> <td>148986</td> <td>26.4</td> <td>0</td> <td>Wind</td> <td>Wind Turbine</td> <td>Proposed</td> <td>2015</td> <td></td>	NYISO	NY	HOUNSF9G 0.6900	W	148986	26.4	0	Wind	Wind Turbine	Proposed	2015	
NYTSO NY HOWD_CV3_G2 (0.9900 W 131654 27.5 27.5 Wind Wind Turbine Proposed 2010 NYISO NY HOWD_CV3_G2 (0.900 W 131654 27.5 27.5 Wind Wind Turbine Proposed 2010 NYISO NY HRTVL_1G 0.6900 W 134768 18.4 18.4 Wind Wind Turbine Proposed 2014 NYISO NY HRTVL_3G 0.6900 W 134769 13.8 13.8 Wind Wind Turbine Proposed 2014 NYISO NY HRTVL_3G 0.6900 W 134770 18.4 18.4 Wind Wind Turbine Proposed 2011 NYISO NY JRCHO_3G 0.6900 W 131865 19.8 Wind Wind Turbine Proposed 2011 NYISO NY JRCHO_4G 0.6900 W 131868 19.8 Wind Wind Turbine Proposed 2011 N	NYISO	NY	HOWD_C93_G1 0.6900	W	131350	1.5	/.5	Wind	Wind Turbine	Proposed	2010	
NYISO NY HRVL_05_053_053.09900 W H31034 27.3 27.3 Vind Wind Halden Proposed 2010 NYISO NY HRTVL_16 0.6900 W 134768 18.4 18.4 Wind Wind Proposed 2014 NYISO NY HRTVL_3G 0.6900 W 134769 13.8 13.8 Wind Wind Proposed 2014 NYISO NY HRTVL_3G 0.6900 W 134770 18.4 18.4 Wind Wind Turbine Proposed 2014 NYISO NY HRCHO_1G 0.6900 W 131865 19.8 Wind Wind Turbine Proposed 2011 NYISO NY JRCHO_4G 0.6900 W 131866 19.8 Wind Wind Turbine Proposed 2011 NYISO NY JRCHO_4G 0.6900 W 131868 19.8 Wind Wind Turbine Proposed 2011 NYISO </td <td>NYISO</td> <td>IN Y NIX</td> <td>HOWD_C93_G2 0.6900</td> <td>W</td> <td>121654</td> <td>27.5</td> <td>27.5</td> <td>Wind</td> <td>Wind Turbine</td> <td>Proposed</td> <td>2010</td> <td></td>	NYISO	IN Y NIX	HOWD_C93_G2 0.6900	W	121654	27.5	27.5	Wind	Wind Turbine	Proposed	2010	
NTLC NT INTEG NO INTEG NO INTEG NO INTEG NO INTEG			HDTVI 1C 0 4000	VV \\//	12/760	27.3 19.4	27.3 18.4	Wind	Wind Turbine	Proposed	2010	
Integration Integration <thintegration< th=""> <thintegration< th=""></thintegration<></thintegration<>			HRTVL 2G 0.6900	W	134760	13.4	12.4	Wind	Wind Turbine	Proposed	2014	
Instructure Instructure <thinstructure< th=""> <thinstructure< th=""></thinstructure<></thinstructure<>	NYISO	NY	HRTVL 3G 0.6900	W	134770	18.4	18.4	Wind	Wind Turbine	Proposed	2014	
NYISO NY JRCHO_2G 0.6900 W 131866 19.8 Wind Wind Tube function 10.0000 2011 NYISO NY JRCHO_2G 0.6900 W 131866 19.8 19.8 Wind Wind Tubine Proposed 2011 NYISO NY JRCHO_4G 0.6900 W 131867 19.8 19.8 Wind Wind Turbine Proposed 2011 NYISO NY JRCHO_4G 0.6900 W 131867 19.8 Wind Wind Turbine Proposed 2011 NYISO NY JRDN_687_G10.6900 W 137201 8 8 Wind Wind Turbine Proposed 2011 NYISO NY JRDN_687_G3 0.6900 W 136982 24 24 Wind Wind Turbine Proposed 2011 NYISO NY JRDN_687_G3 0.6900 W 136983 24 24 Wind Wind Turbine Proposed 2011	NYISO	NY	JRCHO 1G 0.6900	W	131865	19.8	19.8	Wind	Wind Turbine	Proposed	2011	
NYISO NY JRCHO_3G 0.6900 W 131867 19.8 19.8 Wind Wind Turbine Proposed 2011 NYISO NY JRCHO_4G 0.6900 W 131868 19.8 19.8 Wind Wind Turbine Proposed 2011 NYISO NY JRCHO_4G 0.6900 W 131868 19.8 Wind Wind Turbine Proposed 2011 NYISO NY JRDN_687_G2.0.6900 W 137021 8 8 Wind Wind Turbine Proposed 2011 NYISO NY JRDN_687_G2.0.6900 W 136982 24 24 Wind Wind Turbine Proposed 2011 NYISO NY JRDN_687_G3.0.6900 W 136983 24 24 Wind Wind Turbine Proposed 2011 NYISO NY JRDN_687_G3.0.6900 W 136983 24 24 Wind Wind Turbine Proposed 2011 NYISO NY<	NYISO	NY	JRCHO 2G 0.6900	W	131866	19.8	19.8	Wind	Wind Turbine	Proposed	2011	
NYISO NY JRCHO_4G 0.6900 W 131868 19.8 19.8 Wind Wind Turbine Proposed 2011 NYISO NY JRDN_G87_G1.6900 W 137201 8 8 Wind Wind Turbine Proposed 2011 NYISO NY JRDN_G87_G20.6900 W 136982 24 24 Wind Wind Turbine Proposed 2011 NYISO NY JRDN_G87_G30.6900 W 136983 24 24 Wind Wind Turbine Proposed 2011 NYISO NY JRDN_G87_G40.6900 W 136984 24 24 Wind Wind Turbine Proposed 2011 NYISO NY JRDN_G87_G40.6900 W 136984 24 24 Wind Wind Turbine Proposed 2011 NYISO NY JRDR_SVL_1G 1.0000 W 131855 21 21 Wind Wind Turbine Proposed 2011 NYISO NY <td>NYISO</td> <td>NY</td> <td>JRCHO_3G 0.6900</td> <td>W</td> <td>131867</td> <td>19.8</td> <td>19.8</td> <td>Wind</td> <td>Wind Turbine</td> <td>Proposed</td> <td>2011</td> <td> </td>	NYISO	NY	JRCHO_3G 0.6900	W	131867	19.8	19.8	Wind	Wind Turbine	Proposed	2011	
NYISO NY JRDN_G87_G10.6900 W 137201 8 8 Wind Wind Turbine Proposed 2011 NYISO NY JRDN_G87_G3.0.6900 W 136983 24 24 Wind Wind Turbine Proposed 2011 NYISO NY JRDN_G87_G3.0.6900 W 136983 24 24 Wind Wind Turbine Proposed 2011 NYISO NY JRDN_G87_G4.0.6900 W 136984 24 24 Wind Wind Turbine Proposed 2011 NYISO NY JRDN_G87_G4.0.6900 W 136984 24 24 Wind Wind Turbine Proposed 2011 NYISO NY JRDRESVL_161.0000 W 131855 21 21 Wind Wind Turbine Proposed 2011 NYISO NY MORESVL_162 1.0000 W 131856 21 21 Wind Wind Turbine Proposed 2011 NYISO NY	NYISO	NY	JRCHO_4G 0.6900	W	131868	19.8	19.8	Wind	Wind Turbine	Proposed	2011	
NYISO NY JRDN_G87_G2 0.6900 W 136982 24 24 Wind Wind Turbine Proposed 2011 NYISO NY JRDN_G87_G3 0.6900 W 136983 24 24 Wind Wind Turbine Proposed 2011 NYISO NY JRDN_G87_G4 0.6900 W 136983 24 24 Wind Wind Turbine Proposed 2011 NYISO NY JRDN_G87_G4 0.6900 W 136983 24 24 Wind Wind Turbine Proposed 2011 NYISO NY JRDN_G87_G4 0.6900 W 136983 21 21 Wind Wind Turbine Proposed 2011 NYISO NY MORESVL G 1.0000 W 131855 21 21 Wind Wind Turbine Proposed 2011 NYISO NY MORESVL_2G 1.0000 W 131856 21 21 Wind Wind Turbine Proposed 2011 NYISO NY MORESVL_5G 1.000	NYISO	NY	JRDN_G87_G1 0.6900	W	137201	8	8	Wind	Wind Turbine	Proposed	2011	
NYISO NY JRDN_G87_G3 0.6900 W 136983 24 24 Wind Wind Turbine Proposed 2011 NYISO NY JRDN_G87_G4 0.6900 W 136983 24 24 Wind Wind Turbine Proposed 2011 NYISO NY JRDN_G87_G4 0.6900 W 136983 24 24 Wind Wind Turbine Proposed 2011 NYISO NY MORESVL_1G 1.0000 W 131855 21 21 Wind Wind Turbine Proposed 2011 NYISO NY MORESVL_2G 1.0000 W 131856 21 21 Wind Wind Turbine Proposed 2011 NYISO NY MORESVL_5G 1.0000 W 131859 21 21 Wind Wind Turbine Proposed 2011	NYISO	NY	JRDN_G87_G2 0.6900	W	136982	24	24	Wind	Wind Turbine	Proposed	2011	
NYISO NY JKUN_S87_G40.6900 W 1.36984 24 24 Wind Wind Proposed 2011 NYISO NY MORESVL_1G 1.0000 W 131855 21 21 Wind Wind Turbine Proposed 2011 NYISO NY MORESVL_2G 1.0000 W 131856 21 21 Wind Wind Turbine Proposed 2011 NYISO NY MORESVL_5G 1.0000 W 131859 21 21 Wind Wind Turbine Proposed 2011	NYISO	NY	JRDN_G87_G3 0.6900	W	136983	24	24	Wind	Wind Turbine	Proposed	2011	
NYTSU NY MURESVL_1G U000 W 131855 21 21 Wind Wind Proposed 2011 NYISU NY MORESVL_2G 1.0000 W 131856 21 21 Wind Wind Turbine Proposed 2011 NYISO NY MORESVL_5G 1.0000 W 131859 21 21 Wind Wind Turbine Proposed 2011	NYISO	NY	JRDN_G87_G4 0.6900	W	136984	24	24	wind	Wind Turbine	Proposed	2011	
NYISO NY MORESVL_2G NUMU WI Istoso 21 21 Will Will future Proposed 2011 NYISO NY MORESVL_5G 0.0000 W 131859 21 21 Wind Wind Turbine Proposed 2011	NYISO	NY	MORESVL_1G 1.0000	W	131855	21	21	Wind	Wind Turbine	Proposed	2011	
NT INDRESVE_26 1.0000 W 131037 21 21 Wild Wild Libine Proposed 2011	INTISU	INY NV	INUKESVL_ZG I.0000	VV \\/	121050	21	21	Wind	Wind Turbing	Proposed	2011	
NYISO NY MRBLRV1G S880.6000 W 147988 25.2 25.2 Wind Wind Turkine Dronosed 2011		NV NV	MRBLRV1G \$880.6000	W	147988	21	21	Wind	Wind Turbine	Proposed	2011	

РА	State/ Province	Unit Name	Unit ID	PSSE Bus #	Installed Capacity (MW)	Dispatched Amount (MW)	Fuel Type	Generation Technology	Status	In-Service Year	Notes
NYISO	NY	MRBLRV2G_S880.6000	W	147989	21	21	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	MRBLRV3G_S880.6000	W	147990	44.1	44.1	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	MRBLRV4G_S880.6000	W	147991	44.1	44.1	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	MRBLRV5G_5880.6000	W	147992	39.9	39.9	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	MUNSVIL_GE1 0.5750	W	131664	6	6	Wind	Wind Turbine	Committed	2013	
NYISO	NY	MUNSVIL_GE2 0.5750	W	131836	16.5	0	Wind	Wind Turbine	Committed	2013	
NYISO	NY	MUNSVIL_GE3 0.5750	W	131837	18	0	Wind	Wind Turbine	Committed	2013	
NYISO	NY	Q157_ORIN_1G0.5750	W	146041	25.5	0	Wind	Wind Turbine	Proposed	2013	
NYISO	NY	0157_0RIN_260.5750	W	146042	25.5	0	Wind	Wind Turbine	Proposed	2013	
NYISO	NY	Q157_ORIN_4G0.5750	W	146044	24	0	Wind	Wind Turbine	Proposed	2013	
NYISO	NY	Q168_PRY_1G 0.6900	W	134805	28	0	Wind	Wind Turbine	Proposed	2012	
NYISO	NY	Q168_PRY_2G 0.6900	W	134806	28	0	Wind	Wind Turbine	Proposed	2012	
NYISO	NY	0168_PRY_3G 0.6900	W	134808	24	0	Wind	Wind Turbine	Proposed	2012	
NYISO	NY	Q168_PRY_5G 0.6900	Ŵ	134809	28	0	Wind	Wind Turbine	Proposed	2012	
NYISO	NY	Q169_V90_1G 1.0000	W	146656	19.8	19.8	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	Q169_V90_2G 1.0000	W	146655	19.8	19.8	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	Q169_V90_3G 1.0000	W	146653	19.8	19.8	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	O180A CLIB G0.6900	W	146650	10	10	Wind	Wind Turbine	Proposed	2010	
NYISO	NY	Q197_G87_1G 0.6900	W	146721	20	20	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	Q197_G87_2G 0.6900	W	146722	20	20	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	Q197_G87_3G 0.6900	W	146723	20	20	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	0197_687_46 0.6900	W	146714	19.8	10 10 8	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	Q198 V90 2G 1.0000	Ŵ	146713	19.8	19.8	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	Q198_V90_3G 1.0000	W	146712	19.8	19.8	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	Q198_V90_4G 1.0000	W	146711	19.8	19.8	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	Q207_GE_01G 0.6900	1	146699	24	0	Wind	Wind Turbine	Proposed	2012	
NYISO	NY	0207_GE_02G 0.6900	1	146701	24	0	Wind	Wind Turbine	Proposed	2012	
NYISO	NY	Q207_GE_04G 0.6900	1	146702	22.5	0	Wind	Wind Turbine	Proposed	2012	
NYISO	NY	Q207_GE_05G 0.6900	1	146703	12	12	Wind	Wind Turbine	Proposed	2012	
NYISO	NY	Q207_GE_06G 0.6900	1	146704	22.5	0	Wind	Wind Turbine	Proposed	2012	
NYISO	NY	Q207_GE_07G 0.6900	1	146706	24	0	Wind	Wind Turbine	Proposed	2012	
NYISO	NY	0207_GE_00G 0.6900	1	146707	9	0	Wind	Wind Turbine	Proposed	2012	
NYISO	NY	Q207_GE_10G 0.6900	1	146708	24	0	Wind	Wind Turbine	Proposed	2012	
NYISO	NY	Q207_GE_11G 0.6900	1	146709	12	0	Wind	Wind Turbine	Proposed	2012	
NYISO	NY	Q231SEN19-224.1600	1 W	134762	6.4	0	Methane	Steam Turbine	Committed	2010	
NYISO	NY	Q234_CLIB_G10.6900	W	146732	7.5	0	Wind	Wind Turbine	Committed	2010	
NYISO	NY	Q237ALGANY1G0.6600	W	146065	17.5	17.5	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	Q237ALGANY2G0.6600	W	146066	30	30	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	Q237ALGANY3G0.6600	W	146067	30	30	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	Q239WDOOR_IG12.000	W	135172	18	0	Wind	Wind Turbine	Proposed	2015	
NYISO	NY	Q239WDOOR_3G12.000	W	135174	18	0	Wind	Wind Turbine	Proposed	2015	
NYISO	NY	Q239WDOOR_4G12.000	W	135175	18	0	Wind	Wind Turbine	Proposed	2015	
NYISO	NY	Q239WDOOR_5G12.000	W	135176	18	0	Wind	Wind Turbine	Proposed	2015	
NYISO	NY	Q239WDOOR_6G12.000	W	1351//	9	0	Wind	Wind Turbine	Proposed	2015	
NYISO	NY	0246DUTCH 1G 0.6900	W	146081	26	0	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	Q246DUTCH_2G 0.6900	W	146082	26	0	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	Q246DUTCH_3G 0.6900	W	146083	24	0	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	Q246DUTCH_4G 0.6900	W	146084	24	0	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	0246DUTCH_6G 0.6900	W	146086	24	0	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	Q246DUTCH_7G 0.6900	W	146087	26	0	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	Q246DUTCH_8G 0.6900	W	146088	26	0	Wind	Wind Turbine	Proposed	2011	
NYISO	NY NY	0246DUTCH_9G 0.6900	W	146089	24	0	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	0254RIPW 1G 0.6900	W	146157	24	24	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	Q254RIPW_2G 0.6900	W	146158	24	24	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	Q254RIPW_3G 0.6900	W	146159	24	24	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	Q254RIPW_4G 0.6900	W	146160	26.4	26.4	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	0260ELXWHEEL0 4800	1	140101	20.4	0 20.4	Flywheel	Flywheel	Committed	2011	
NYISO	NY	Q263STONY_1G0.6900	Ŵ	135195	24	24	Wind	Wind Turbine	Proposed	2010	
NYISO	NY	Q263STONY_2G0.6900	W	135194	24	0	Wind	Wind Turbine	Proposed	2010	
NYISO	NY	Q263STONY_3G0.6900	W	135193	24	0	Wind	Wind Turbine	Proposed	2010	
NYISO	NY NV	U2035TUNY_4G0.6900	W	135192	24	0	Wind	Wind Turbine	Proposed	2010	
NYISO	NY	Q263STONY 6G0.6900	W	135190	22.5	0	Wind	Wind Turbine	Proposed	2010	
NYISO	NY	Q271STLINE1G0.6900	W	146271	24	0	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	Q271STLINE2G0.6900	W	146272	24	0	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	Q271STLINE3G0.6900	W	146273	24	0	Wind	Wind Turbine	Proposed	2011	
	NY NY	0271STLINE4G0.6900	W	1402/4	20.4	0	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	Q308_GT1 18.000	1	148708	193.1	0	Natural Gas	Combined Cycle	Committed	2011	
NYISO	NY	Q308_GT2 18.000	1	148709	193.1	0	Natural Gas	Combined Cycle	Committed	2011	
NYISO	NY	Q308_ST 18.000	1	148710	277.2	0	Steam	Combined Cycle	Committed	2011	
	NY NY	STLAW AW G1 12 000	W	130632	32	12	Wind	Wind Turbine	Proposed	2011	
NYISO	NY	STLAW AW G2 12.000	W	136993	39	39	Wind	Wind Turbine	Proposed	2012	
NYISO	NY	STLAW AW G3 12.000	W	136994	39	39	Wind	Wind Turbine	Proposed	2012	

РА	State/ Province	Unit Name	Unit ID	PSSE Bus #	Installed Capacity (MW)	Dispatched Amount (MW)	Fuel Type	Generation Technology	Status	In-Service Year	Notes
NYISO	NY	STLAW_AW_G4 12.000	W	136995	39	39	Wind	Wind Turbine	Proposed	2012	
NYISO	NY	WHILL_AW_1 12.000	W	138054	12	12	Wind	Wind Turbine	Proposed	2012	
NYISO	NY	WHILL_AW_2 12.000	W	138055	12	12	Wind	Wind Turbine	Proposed	2012	
NYISO	NY	WHILL_AW_3 12.000	W	138057	13.5	13.5	Wind	Wind Turbine	Proposed	2012	
NYISO	NY	WHORSE G 0.5750	1	134845	19.5	0	Wind	Wind Turbine	Proposed	2013	
PEC	NC	6DBGENW	D	304860	350	350	N/A	Conceptual	Proposed		
PEC	NC	1RICHCC2	Α	304978	643	643	Gas	Combined Cycle	Committed	2011	
PEC	NC	8DBGEN	1	304998	700	700	N/A	Conceptual	Proposed		
PEF	FL	HIG P1&2	1	402196	26	0	Distillate Fuel Oil	Gas Turbine	Retired	2016	
PEF	FL	HIG P1&2	2	402196	27	0	Distillate Fuel Oil	Gas Turbine	Retired	2016	
PEF	FL	HIG P3&4	1	402197	30	0	Distillate Fuel Oil	Gas Turbine	Retired	2016	
PEF	FL	HIG P3&4	2	402197	30	0	Distillate Fuel Oil	Gas Turbine	Retired	2016	
PEF	FL	SUW CT4	30	402975	178	0	Natural Gas	Gas Turbine	Planned	2019	
PEF	FL	SUW CT5	30	402976	178	0	Natural Gas	Gas Turbine	Planned	2019	
PEF	FL	SWN P1&2	1	402987	52	0	Distillate Fuel Oil	Steam Turbine	Retired	2015	
PEF	FL	LEVY G1	30	403283	1092	1092	Nuclear	Steam Turbine	Planned	2019	
PEF	FL	LEVY G2	30	403284	1092	1092	Nuclear	Steam Turbine	Planned	2020	K04 0510
PJM	IL	FREEPI_G	1	90800, 99070	80.0	14.3	Wind	Wind Turbine	Committed	10/15/2011	KU4_CE19
PJM	VVV DA	JU/	1	292090	124	117.4	Wind	Wind Turbine	Committeed	11/30/2011	
PJM	PA	KU2	1	200857	70	-	Wind	Wind Turbine	Committed	12/21/2010	
PJW	IL MAY	K02_CE18	1	202200	21		Wind	Wind Turbine	Committed	11/20/2011	
PJW DIM	MD	K20	1	292300	100.0	29.4	Wind	Wind Turbine	Committed	12/21/2010	
PJW	0H	N20	1	92400, 29240 246750	165	17.0	Piomass		Committed	12/31/2010	Susponded Project
PIM	1	112 CE23	1	02535 20253	105	3.6	Wind	Wind Turbine	Committed	1/15/2007	Suspended Project
PIM	IL	LEEU	1	74872, 29010	240.0	44.6	Wind	Wind Turbine	Committed	6/1/2010	057
PIM	WV	M23	1	92850, 29285	150	0	Wind	Wind Turbine	Committed	11/30/2011	
PJM	PA	M26	1	292880	272	0	Coal		Committed	11/30/2013	
PJM	DF	N03	1	93654, 29365	300	53.3	Natural Gas	1	Committed	8/9/2004	
PJM	VA	N07	1	92860, 29286	38	173.3	Wind	Wind Turbine	Committed	9/14/2009	
PJM	IL IL	N21	1	93120, 29312	6	1	Wind	Wind Turbine	Committed	4/15/2007	1
PJM	IL.	N22	1	93130, 29313	11	2	Wind	Wind Turbine	Committed	4/15/2007	
PJM	L	N23	1	93140, 29314	11	2	Wind	Wind Turbine	Committed	4/15/2007	
PJM	IL	N24	1	93150, 29315	11	2	Wind	Wind Turbine	Committed	4/15/2007	1
PJM	IL	N25	1	93160, 29316	11	2	Wind	Wind Turbine	Committed	4/15/2007	1
PJM	PA	N32	1	93230, 29323	10.1	9.0	Wind	Wind Turbine	Committed	1/31/2011	
PJM	OH	N42	1	293330	600	2	Coal		Committed	5/1/2010	
PJM	WV	N47	1	93380, 29338	85	15.1	Wind	Wind Turbine	Committed	12/31/2011	
PJM	L	O09	1	93515, 29351	212	18.3, 10.2, 9.3	Wind	Wind Turbine	Committed	1/1/2009	
PJM	PA	019	1	93611, 29361	33.0	5.9	Wind	Wind Turbine	Committed	5/31/2012	
PJM	NJ	O20	1	206280	9.1	8.1	Methane		Committed	6/1/2007	
PJM	IL IL	024	1	93664, 29366	100.8	18	Wind	Wind Turbine	Committed	12/1/2008	
PJM	IL.	027	1	90003, 29000	300	26.7, 26.7	Wind	Wind Turbine	Committed	12/1/2009	
PJM	IL	029	1	93714, 29371	225	19.7, 10.5, 9.8	Wind	Wind Lurbine	Committed	1/1/2009	
PJM	WV	032	1	293740	20.0	17.8	Coal		Committed	6/30/2007	
РЈМ	WV	032	1	293740	20	17.8	Coal	Mend Task's s	Committed	6/30/2007	
РЈМ	IL N	033	1	90008, 29000	20	3.6	Wind	Wind Turbine	Committed	12/30/2007	
PJM DIM	MI	042	1	293840	84.0	/4.8	Nuclear	Steam Turbine	Committed	1/19/2007	
PJM	IL DA	043 049 D40	1	2/4805	42	37.4	Natural Gas	Wind Turbino	Committed	6/1/2007	
PJM DIM	PA	048, K40	1	93432, 29390	37.8	25.6	Wind	Wind Turbine	Committed	0/30/2008	
P JW	DA IL	054	1	252001	200	30.0	Nuclear	Stoom Turbing	Committed	7/1/2011	Uprate to Resure Valley Upit 2
PIM	II.	068	1	94175 29412	100	17.8	Wind	Wind Turbine	Committed	12/31/2011	Oprate to beaver valley offit 2
PIM	1	073	1	90046 29004	100	17.8	Wind	Wind Turbine	Committed	12/31/2010	
PIM	PA	P04	1	00192-20019	555.0	3 7 108 7 108 7 16	Natural Gas		Committed	7/1/2011	
PJM	VA	P09	1	15158-31516	91.0	-	Water	Hydro Turbine	Committed	9/30/2008	Uprate to Kerr Damn Units
PJM	IL IL	P10	1	94391, 29439	340.5	35.6	Wind	Wind Turbine	Committed	12/1/2009	
PJM	L	P11	1	94400, 29440	100	17.8	Wind	Wind Turbine	Committed	6/1/2009	
PJM	IL	P14	1	90050, 29005	80	14.3	Wind	Wind Turbine	Committed	6/1/2009	
PJM	IL IL	P20	1	94500, 29450	210	37.4	Wind	Wind Turbine	Committed	3/1/2009	
PJM	L	P24	1	95103, 29510	20	3.6	Wind	Wind Turbine	Committed	12/1/2008	
PJM	IL IL	P25	1	95106, 29510	20	3.6	Wind	Wind Turbine	Committed	12/1/2008	
PJM	L	P26	1	90052, 29005	20	3.6	Wind	Wind Turbine	Committed	12/1/2008	
PIM	ОН	P30	1	246759	20		Biomass		Committed	12/31/2009	Suspended Project;
				210/3/	20		_10111035		-	.2,51/2007	Uprate to L01_AEP137
PJM	PA	P34	1	294155	7	6.2	Biomass		Committed	3/17/2009	
PJM	IL IL	P36	1	74857, 27485	240.0	42.8	Wind	Wind Turbine	Committed	6/30/2010	
PJM	L L	P37	1	94670, 29467	212	37.8	Wind	Wind Furbine	Committed	3/1/2009	
PJM	VA	P38	1	15414-31541	625.0	137.2, 137.2, 282.5	Natural Gas	Mend Toul to	Committed	4/1/2011	
PJM		P39	1	90055, 29005	60	10./	VVIDO		Committed	12/1/2008	
PIM PIM	IL NO	P40	1	94/00, 29470	20	3.6	VVIDO	vvina i urbine	Committed	10/1/2010	
PJM	INC	P43	1	31541/ 0004E_20004	03	20.1	VV000	Wind Turking	Committee	10/1/2010	
P IM	VVV MAX	P32	1	70000, 29000	8U 12E 0	14.3	Wind	Wind Turbing	Committee	7/20/2011	
D IM	VVV INI	003	1	0/062 20/02	250.0	22.3 AA 6	Wind	Wind Turbing	Committed	7/1/2011	
P IM	NI	011	1	295016	200.0	80 1	Natural Cas		Committed	12/1/2012	
PIM	DA	020	1	275010	140.0	606 606 19 19	Water	Hydro Turbino	Committed	7/1/2011	
PIM	PA	025	1	95191, 29510	80	14.3	Wind	Wind Turbine	Committed	3/1/2013	
PIM	PA	034	1	90081, 29009	100.0	17.8	Wind	Wind Turbine	Committed	4/1/2011	1
PJM	PA	Q36	1	90085. 29008	50.0	10.7	Wind	Wind Turbine	Committed	3/8/2011	
PJM	IL IL	Q39	1	90089, 29009	147	26.2	Wind	Wind Turbine	Committed	3/1/2009	1
PJM	NJ	Q41	1	290092	30	-	Biomass		Committed	12/31/2013	
PJM	VA	Q43	1	290094	534.0	475.8	Coal	1	Committed	3/1/2012	İ
PJM	VA	Q43	1	290094	534	475.8	Coal	1	Committed	3/1/2012	İ
PJM	PA	Q46	1	295247	10	8.9	Coal		Committed	3/1/2009	
PJM	PA	Q47	1	00034, 20003	140.0	-	Nuclear	Steam Turbine	Committed	4/1/2013	Uprate to Peachbottom Units 2,3
PJM	L	Q49	1	274658	70.0	-	Nuclear	Steam Turbine	Committed	1/31/2012	Uprate to Dresden Unit 2
PJM	IL	Q50	1	274659	70.0	-	Nuclear	Steam Turbine	Committed	1/31/2012	Uprate to Dresden Unit 3

ΡΑ	State/ Province	Unit Name	Unit ID	PSSE Bus #	Installed Capacity (MW)	Dispatched Amount (MW)	Fuel Type	Generation Technology	Status	In-Service Year	Notes
PJM	L	Q51	1	74662, 27466	140.0		Nuclear	Steam Turbine	Committed	10/31/2010	Uprate to Quad City Units
PJM	PA	Q53	1	00882, 20088	38.0	8.9	Wind	Wind Turbine	Committed	12/31/2010	
PJM	WV	Q55	1	90103, 29010	100	17.8	Wind	Wind Turbine	Committed	12/31/2009	
PJM	PA	Q63	1	290113	16	14.3	Water	Hydro Turbine	Committed	3/31/2008	
PJM	WV	Q79	1	295731	100.0	89.1	Coal		Committed	3/12/2011	
PJM	NJ	Q90	1	295841	650	579.2	Natural Gas		Committed	6/1/2012	
PJM	PA	R02	1	295870	1600	1425.6	Nuclear	Steam Turbine	Committed	12/31/2018	
PJM	IN	R03	1	95880, 29588	130	23.2	Wind	Wind Turbine	Committed	12/31/2008	
PJM	NJ	R11	1	295952	440	-	Natural Gas		Committed	6/1/2013	
PJM	MD	R17	1	292425	275	245	Natural Gas		Committed	6/1/2013	
PJM	L L	R18	1	290266	6.4		Methane		Committed	1/3/2008	
PJM	VA	R31	1	15420, 31542	18	7.1	Natural Gas		Committed	10/1/2010	
PJM	PA	R32	1	96322, 29633	75	13.4	Wind	Wind Turbine	Committed	12/1/2009	
PJM	IL.	R35	1	274839	50.0	44.6	Biomass		Committed	9/30/2011	
PJM	DE	R36	1	96355, 29635	450.0	80.2	Wind	Wind Turbine	Committed	6/1/2015	
PJM	PA	R43	1	212386	20.0	3.6	Wind	Wind Turbine	Committed	6/1/2012	
PJM	OH	R48	1	96145, 29614	48.3	8.6	Wind	Wind Turbine	Committed	8/1/2013	
PJM	OH	R49	1	96456, 29645	150	-	Wind	Wind Turbine	Committed	10/31/2011	
PJM	OH	R52	1	96455, 29647	200	17.8, 17.8	Wind	Wind Turbine	Committed	10/1/2008	
PJM	ОН	R52a	1	90286, 29028	100	17.8	Wind	Wind Turbine	Committed	10/1/2008	
PJM	IN	R60	1	96883, 29688	350	20.7, 20.7, 21.0	vvina	wind lurbine	Committed	12/31/2011	
PJM	VA	R63	1	315450	19.0	16.9	Coal	Dealer Teal for	Committed	6/1/2011	
PJM DIM	VVV	R/0	1	290010	100	89.1	Water	nyuro rurbinė	Committed	6/1/2010	Uprato to Doccum Doint Units
PJM PJM	VA	R00 D07	1	242442	20.0	-	Inatural Gas	1	Committee	6/07/2000	Uprate to Possum Point Units
P JIVI	111	\$100	1	243442	20.0	71.2	Coal		Committed	3/1/2008	
D IM		S100	1	271000	500 0	155 0 155 0 20/ 7	Natural Cas		Committed	J/1/2012	
DIM	DA	\$103	1	2003-29208	500.0	50.9 50.0, 100.0, 200.7	Natural Cas		Committed	5/21/2014	
DIM	NU NU	S107	1	17 201010 20	580	142.6 142.6 221.7	Natural Cas		Committed	6/1/2011	
PIM		S111	1	315232	15.0	1 172.0, 192.0, 231.7	Nuclear	Steam Turbine	Committed	12/13/2010	Unrate to Surry Unit 2
DIM	VA	\$112	1	315235	65.0	-	Nuclear	Steam Turbine	Committed	12/15/2010	Uprate to North Anna Unit 1
PIM	VA	S112 S113	1	315116	15.0		Nuclear	Steam Turbine	Committed	11/13/2012	Uprate to Surry Unit 1
PIM	VA	\$114	1	315116	75.0		Nuclear	Steam Turbine	Committed	11/13/2010	Uprate to Surry Unit 1
PIM	VA	S115	1	315233	75.0		Nuclear	Steam Turbine	Committed	5/4/2011	Uprate to Surry Unit 2
PIM	NI	\$121	1	291065	63.0	56.1	Natural Gas		Committed	6/1/2012	
PJM	MD	\$14	1	90228, 29022	70	12.5	Wind	Wind Turbine	Committed	12/1/2009	
PJM	MD	S17	1	290893	112.5	100.2	Natural Gas		Committed	12/31/2010	
PJM	PA	S29B	1	291409	5.7	5.1	Methane		Committed	3/31/2011	
PJM	PA	S29B	1	291409	5.7	5.1	Methane		Committed	3/31/2011	
PJM	OH	S35	1	242931	20.0	-	Coal		Committed	6/27/2007	Uprate to Washington Units
PJM	MD	S38	1	290304	8		Coal		Committed	1/26/2009	
PJM	OH	S45	1	90685, 29068	100	17.8	Wind	Wind Turbine	Committed	12/31/2009	
PJM	NJ	S60	1	290740	63	56.1	Natural Gas		Committed	6/1/2008	
PJM	NJ	S61	1	290745	20	17.8	Natural Gas		Committed	7/1/2007	
PJM	PA	S64	1	290760	18	16	Biomass		Committed	1/1/2011	
PJM	WV	S70	1	90784, 29078	36.4	16.2, 16.2	Water	Hydro Turbine	Committed	7/1/2012	
PJM	IN	S71	1	90787, 29078	120	21.4, 21.4	Wind	Wind Turbine	Committed	10/1/2012	
PJM	IN	S72	1	90792, 29080	300	26.7, 26.7	Wind	Wind Turbine	Committed	12/1/2010	
PJM	IN	S73	1	290797, 2907	200	17.8, 17.8	Wind	Wind Turbine	Committed	12/1/2010	
PJM	WV	S74	1	315252	25.0	-	Coal		Committed	6/1/2011	Uprate to Mt. Storm Unit 2
PJM	WV	S75	1	315253	27.0	-	Coal		Committed	6/1/2012	Uprate to Mt. Storm Unit 3
PJM	WV	S76	1	315251	25.0	-	Coal		Committed	6/1/2013	Uprate to Mt. Storm Unit 1
PJM	VA	\$79	1	315065	27.0	-	Coal		Committed	12/1/2010	Uprate to Chesterfield Unit 6
PJM	VA	\$80	1	315060	20.0	-	Coal		Committed	6/1/2011	Uprate to Chesterfield Unit 5
PJM	VA	\$82	1	315119	20.0	-	Natural Gas		Committed	6/1/2010	Uprate to Gravel Neck Unit 3
PJM	VA	S83	1	315120	20.0	-	Natural Gas		Committed	6/1/2010	Uprate to Gravel Neck Unit 4
PJM	VA	284	1	315121	20.0	-	Natural Gas		Committed	6/1/2010	Uprate to Gravel Neck Unit 5
PJM	VA	282	1	315122	20.0	- 17.0	INatural Gas		Committed	6/1/2010	Uprate to Gravel Neck Unit 6
PJM	VA	37/ 500	1	315437	20.0	17.8	INatural Gas		Committed	0/1/2013	
PJM	VA	370 T06	1	315438	20.0	8.11	Inatural Gas	1	Committed	0/1/2013 5/1/2014	Uprato to Vorktown Unit 2
PJM PJM	VA	T10	1	215441	20.0	-	Mothana	1	Committee	3/1/2014	opiale to forkiown unit 3
DIM	NU	T107	1	310441	5.U 624 F	2.7	Natural Cas		Committed	1/21/2012	
DIM	DA	T109	1	202220	24.3	17.9	Coal		Committed	<u>4/1/2012</u>	
PIM	M	T111	1	272337	8.0	141414141	Methane	1	Committed	12/31/2009	
PIM	PA	T117	1	92375.20227	126.0	428 428 267	Natural Cas	1	Committed	6/1/2000	
PIM	ΡΔ	T118	1	13889 21389	10.0	42.0, 42.0, 20.7	Natural Cas		Committed	6/1/2012	Unrate to Phillins Island Units
PIM	PA	T129	1	38, 213739 2	20.0		Natural Gas	1	Committed	6/1/2010	Uprate to Eddystone Units
PJM	OH	T130	1	92439, 29244	300	53.5	Wind	Wind Turbine	Committed	10/30/2010	
P.IM	OH	T131	. 1	92443, 29244	150	26.7	Wind	Wind Turbine	Committed	10/30/2010	1
PJM	MD	T133	1	292451	225	200.5	Natural Gas		Committed	5/1/2011	1
PJM	MD	T134	1	292457	325	289.6	Natural Gas		Committed	5/1/2012	1
PJM	NJ	T135	1	228309	15.0	-	Coal		Committed	1/7/2008	Uprate to CCLP Unit
PJM	OH	T142	1	92490, 29249	300	53.5	Wind	Wind Turbine	Committed	10/30/2010	
PJM	OH	T154	1	292544	10	8.9	Methane		Committed	2/18/2009	1
PJM	PA	T155	1	292548	6	5.3	Water	Hydro Turbine	Committed	6/1/2010	
PJM	PA	T156	1	292552	20	17.8	Coal		Committed	2/28/2011	
PJM	WV	T157	1	92557, 29255	160	28.5	Wind	Wind Turbine	Committed	6/30/2011	
PJM	OH	T164	1	242940	15.0	-	Coal		Committed	2/1/2008	Uprate to Muskingum River Unit 5
PJM	OH	T165	1	243623	20.0	-	Coal		Committed	2/1/2008	Uprate to Conesville Unit 5
PJM	OH	T166	1	243624	20.0	-	Coal		Committed	2/1/2008	Uprate to Conesville Unit 6
PJM	VA	T167	1	292597	120	106.9	Natural Gas		Committed	6/1/2016	
PJM	PA	T174	1	92627, 29262	930	1.8, 164.8, 164.8, 33	Natural Gas		Committed	6/1/2011	
PJM	VA	T180	1	51, 292652, 2	650	164.8,. 164.8, 249.5	Natural Gas		Committed	6/1/2012	
PJM	PA	1182	1	204659	24.0		Nuclear	Steam Turbine	Committed	1/31/2008	Uprate to Three Mile Island Unit
PJM	PA	139	1	92133, 29213	18	3.2	Wind	Wind Lurbine	Committed	3/31/2011	
PJM	NJ	141	1	92142-29214	178.0	89.7, 39.7, 39.7, 39.	Natural Gas		Committed	6/1/2012	
I PJM	I NJ	141	1	292142	44.5	39.7	Natural Gas	1	Committed	6/1/2012	

PA	State/ Province	Unit Name	Unit ID	PSSE Bus #	Installed Capacity (MW)	Dispatched Amount (MW)	Fuel Type	Generation Technology	Status	In-Service Year	Notes
PJM	NJ	T42	1	92146, 29214	88	39.7	Natural Gas		Committed	6/1/2012	
PJM	NJ	T43	1	92151, 29215	178	39.7, 39.7, 39.7, 39.	Natural Gas		Committed	6/1/2012	
PJM	NJ	T45	1	59, 292160, 2	205	5, 36.5, 36.5, 36.5,	Natural Gas		Committed	6/1/2011	
PJM	OH	T48	1	92163, 29216	50	8.9	Wind	Wind Turbine	Committed	11/30/2013	
PJM	DE	T52	1	31911-23191	20.0	-	Natural Gas		Committed	5/1/2008	Uprate to Hay Road Units 5,6,7,8
PJM DIM	DE	153	1	292178	7.3	6.5	Oil		Committed	6/1/2008	
PJM DJM	NJ NJ	154	1	292183	0.0	5.9	Natural Gas		Committee	4/1/2009	
PJM DIM	NJ	154	1	292183	6.6	5.9	Natural Gas		Committed	4/1/2009	
PJM	NJ NJ	100	1	292187	15.3	13.0	Natural Gas		Committee	4/1/2009	
PJM		100	1	292187	0.4	13.0	Natural Gas		Committed	4/1/2009	Uprata to Obrictiona Unito
DIM	NI	T50	1	202200	12.0	- 11.5	Natural Cas		Committed	4/1/2009	
PIM	NJ	T50	1	292200	12.7	11.5	Natural Cas		Committed	4/1/2009	
PIM	DE	T67	1	231918	53	11.5	Oil		Committed	4/1/2009	Uprate to West Substation Unit
PIM	DE	T68	1	231917	5.2		Oil		Committed	4/1/2009	Uprate to Edge Moor Unit 10
PJM	NJ	T76	1	292241	27.3	24.3	Natural Gas		Committed	6/15/2009	
PJM	NJ	T76	1	292241	27.3	24.3	Natural Gas		Committed	6/15/2009	
PJM	NJ	T77	1	218435	64.0	-	Natural Gas		Committed	10/4/2007	Uprate to Linden Unit 1
PJM	NJ	T84	1	92271, 29227	350	31.2, 31.2	Wind	Wind Turbine	Committed	12/31/2012	<u> </u>
PJM	PA	T85	1	292274	6.0	5.3	Methane		Committed	12/31/2008	
PJM	PA	T86	1	203283	1.5	1.3	Methane		Committed	7/1/2008	
PJM	PA	U1-010	1	292769	10.0	16.0	Natural Gas		Committed	7/1/2011	
PJM	NC	U1-031	1	92789, 29279	80	35.6	Wood		Committed	6/30/2012	
PJM	L	U1-054	1	93964, 29396	46.0	29.9, 10.8	Natural Gas		Committed	3/28/2008	
PJM	NJ	U1-056	1	92815, 29281	350	40.5	Wind	Wind Turbine	Committed	4/1/2014	
PJM	OH	U1-059	1	92821, 29282	50	5.8	Wind	Wind Turbine	Committed	4/1/2011	
PJM	NJ	U1-66	1	292827	9	8	Oil	Line T. I.	Committed	5/1/2011	
PJM	NJ	U1-066	1	292846	12	10.7	Water	Hydro Lurbine	Committed	5/1/2011	
PJM	OH	U1-090	1	292881	12	10.7	Loal	Mind Turking	Committeed	5/31/2008	
PJM	MD	U2-U3U	1	929512	0.00	0.9	VVINO Mothono	vvina i urbine	Committed	10/1/2010	
PJM	VA	U2-031	1	92953, 29295	30	22.1	Methane	Wind Turbino	Committed	6/1/2011	
PJM	UH	U2-041	1	92960, 29296	300.0	17.4, 17.4	Wind	Wind Turbine	Committed	12/1/2011	
PJW	VA	U2-050	1	92972, 29297	60	6.0	Wind	Wind Turbine	Committed	12/1/2010	
DIM	VA	112 056	1	22774, 27277	00	70.2	Othor		Committed	12/1/2010	
PIM	VA	112-057	1	292988	48	42.8	Other		Committed	12/1/2010	
PIM	MD	112-061	1	29962 92997	50.0	5.8	Wind	Wind Turbine	Committed	12/15/2010	
PIM	PA	112-067	1	209021	2.5		Other	Wind Fulbline	Committed	7/1/2008	Uprate to Westwood Nug Unit
PJM	VA	U2-068	1	93011, 29301	130	15.1	Wind	Wind Turbine	Committed	12/1/2011	
PJM	PA	U2-069	1	209032	56.0	6.5	Wind	Wind Turbine	Committed	6/1/2014	
PJM	PA	U2-074	1	293031	300	267.3	Natural Gas		Committed	10/1/2012	
PJM	NJ	U3-032	1	99905, 29990	20	5.8	Solar		Committed	6/1/2011	
PJM	VA	U4-026	1	91956, 29195	100	11.6	Wind	Wind Turbine	Committed	12/31/2013	
PJM	L	U4-030	1	291972	6	5.3	Natural Gas		Committed	6/23/2010	
PJM	OH	U4-034	1	291988	5.0	4.5	Coal		Committed	1/1/2010	
PJM	OH	U4-035	1	291992	5.0	4.5	Coal		Committed	1/1/2010	
PJM	NJ	U4-036	1	91995, 29199	5.45	4.1	Solar		Committed	4/1/2011	
PJM	PA	U4-040	1	292011	2	1.8	Natural Gas		Committed	1/1/2011	
PJM	PA	U4-041	1	292015	2	1.8	Diesel		Committed	1/1/2011	
PJM DIM	PA	U4-042	1	292019	2	1.8	Diesel		Committed	1/1/2011	
PJM	PA	U4-U43	1	292023	2	1.8	Diesel		Committed	1/1/2011	
PJW	PA DA	14 045	1	292027	2	1.0	Diesel		Committed	1/1/2011	
PIM	DA PA	114-045	1	292031	2	1.0	Diesel		Committed	1/1/2011	
PIM	PA	114-047	1	292039	2	1.0	Diesel		Committed	1/1/2011	
PIM	PA	114-048	1	292043	2	1.8	Diesel		Committed	1/1/2011	
PS	Al	MCNTSH6G	· · ·	17756	187	187	Gas	Combined Cycle	Proposed	2019	
SCE&G	SC	VC Summer #2	2	370835	1165.0	1165.0	Nuclear	Steam Turbine	Committed	2016	
SCE&G	SC	VC Summer #3	3	370836	1165.0	1165.0	Nuclear	Steam Turbine	Committed	2019	
SOCO	GA	1MCDON 4ST 18.000	4	202070	270 7	r 070	Cas	Combined Outle	Committed	2011	Approved by State Public Service
			4	383878	3/9.1	3/9.7	GdS			2011	Commission
SOCO	GA	1MCDON 4A 21.000	44	393070	240	240	Cas	Combined Cyclo	Committed	2011	Approved by State Public Service
			-1A	303077	240	240				2011	Commission
SOCO	GA	1MCDON 4B 21.000	4B	383880	240	240	Gas	Combined Cycle	Committed	2011	Approved by State Public Service
				303000	240	210	003	Combined Oycie		2011	Commission
SOCO	GA	1MCDON 6ST 18.000	6	383883	375.1	375.1	Gas	Combined Cycle	Committed	2011	Approved by State Public Service
					07011	0.0.1	000			2011	Commission
SOCO	GA	1MCDON 6A 21.000	6A	383884	240	240	Gas	Combined Cycle	Committed	2011	Approved by State Public Service
											Commission
SOCO	GA	1MCDON 6B 21.000	6B	383885	240	240	Gas	Combined Cycle	Committed	2011	Approved by State Public Service
0000	C.A.	1MCDON FET 10.000							Committed		Commission
SUCU	GA	INCDUN 551 18.000	5	383961	373.1	373.1	Gas	Combined Cycle	Committee	2011	Approved by State Public Service
5000	GA	1MCDON 5A 21 000							Committed		Approved by State Public Service
5000		111CDON 3A 21.000	5A	383962	240	240	Gas	Combined Cycle	Committee	2011	Commission
SOCO	GA	1MCDON 5B 21.000		-	0.17	0.17			Committed		Approved by State Public Service
			5B	383963	240	240	Gas	Combined Cycle		2011	Commission
SOCO	GA	1LIVEOAKS1ST18.000	1	386038	250	0	Gas	Combined Cycle	Committed	2011	Signed IA in suspension
SOCO	GA	1LIVEOAKS 1A18.000	1A	386039	171	0	Gas	Combined Cycle	Committed	2011	Signed IA in suspension
SOCO	GA	1LIVEOAKS 1B18.000	1B	386040	171	0	Gas	Combined Cycle	Committed	2011	Signed IA in suspension
SOCO	GA	1FITZ BIO 13.800	1	383778	55	55	Biomass	Biomass	Committed	2012	IA has been signed by customer
SOCO	GA	1LONGLF1 23.000	1	383714	600	0	Coal	Coal	Committed	2013	Customer has executed IA
SOCO	GA	1LONGLF2 23.000	2	383715	600	0	Coal	Coal	Committed	2013	Customer has executed IA
SOCO	GA	1WARREN BIO 13.800	1	383776	100	100	Biomass	Biomass	Proposed	2014	IC Facility Study is in progress
SOCO	GA	1WASHOPC CT118.000	1	383701	183.6	108.6	Gas	Combustion Turbine	Proposed	2015	IC Facility Study is in progress
SOCO	GA	1WASHOPC CT218.000	2	383702	183.5	108.6	Gas	Combustion Turbine	Proposed	2015	IC Facility Study is in progress
SOCO	GA	1WASHOPC CT318.000	3	383703	183.6	108.6	Gas	Combustion Turbine	Proposed	2015	IC Facility Study is in progress
5000	GA	ISMARK CUT 18.000		383/23	210	211	Gq2	Louinninea Chcie	Committed	2015	TA IS penaing

PA	State/ Province	Unit Name	Unit ID	PSSE Bus #	Installed Capacity (MW)	Dispatched Amount (MW)	Fuel Type	Generation Technology	Status	In-Service Year	Notes
SOCO	GA	1SMARR CC1A 18.000	1A	383724	185.5	185.5	Gas	Combined Cycle	Committed	2015	IA is pending
SOCO	GA	1SMARR CC1B 18.000	1B	383725	185.5	185.5	Gas	Combined Cycle	Committed	2015	IA is pending
SOCO	MS	1KEMP CC1 1 18.000	1	386881	268	268	Gas	Combined Cycle	Committed	2015	Approved by State Public Service Commission
SOCO	MS	1KEMP CC1 1A18.000	1A	386882	166	166	Gas	Combined Cycle	Committed	2015	Approved by State Public Service Commission
SOCO	MS	1KEMP CC1 1B18.000	1B	386883	166	166	Gas	Combined Cycle	Committed	2015	Approved by State Public Service Commission
SOCO	GA	1VOGTLE3 26.000	3	383753	1100	1100	Nuclear	Steam Turbine	Committed	2016	Approved by State Public Service Commission
SOCO	GA	1VOGTLE4 26.000	4	383754	1100	1100	Nuclear	Steam Turbine	Committed	2017	Approved by State Public Service Commission
SOCO	GA	1HANCOCK 1ST18.000	1	383991	320	320	Gas	Combined Cycle	Proposed	2019	Load Serving Entity Future Resource Assumption
SOCO	GA	1HANCOCK 1A 21.000	1A	383992	260	260	Gas	Combined Cycle	Proposed	2019	Load Serving Entity Future Resource Assumption
SOCO	GA	1HANCOCK 1B 21.000	1B	383993	260	260	Gas	Combined Cycle	Proposed	2019	Load Serving Entity Future Resource Assumption
SOCO	GA	1HANCOCK 2ST18.000	2	383994	320	320	Gas	Combined Cycle	Proposed	2020	Load Serving Entity Future Resource Assumption
SOCO	GA	1HANCOCK 2A 21.000	2A	383995	260	260	Gas	Combined Cycle	Proposed	2020	Load Serving Entity Future Resource Assumption
SOCO	GA	1HANCOCK 2B 21.000	2B	383996	260	260	Gas	Combined Cycle	Proposed	2020	Load Serving Entity Future Resource Assumption
SOCO	GA	1SMARR CC2 18.000	2	383726	210	211	Gas	Combined Cycle	Committed	2020	IA is pending
SOCO	GA	1SMARR CC2A 18.000	2A	383727	185.5	185.5	Gas	Combined Cycle	Committed	2020	IA is pending
SOCO	GA	1SMARR CC2B 18.000	2B	383728	185.5	185.5	Gas	Combined Cycle	Committed	2020	IA is pending
SPP	AR	TURKCOAL 24.000	1	509416	713	620	Coal	Steam Turbine	Planned	2012	
SPP	OK	TLGAWND1 34.500	1	515389	130	12	Wind	Wind Turbine	Planned	2010	
SPP	OK	KEENAN 1 34.500	1	515393	150	14	Wind	Wind Turbine	Planned	2010	
SPP	OK	OGEWND11 34.500	1	515425	150	14	Wind	Wind Turbine	Planned	2011	
SPP		MODINDA 19 000	1	515428	200	0	Cas	Stoom Turbino	Planned	2010	
SDD	TY	ANTELOPE A 113 800	Δ1	5258/1	0 444	0.3/	Gas	Cas Turbino	Planned	2010	
SPP	TX	ANTELOPE A 113.800	A1 A2	525841	9.444	9.34	Gas	Gas Turbine	Planned	2010	
SPP	TX	ANTELOPE A 113.800	A3	525841	9.444	9.34	Gas	Gas Turbine	Planned	2010	
SPP	TX	ANTELOPE_A 113.800	A4	525841	9.444	9.34	Gas	Gas Turbine	Planned	2010	
SPP	TX	ANTELOPE_A 113.800	A5	525841	9.444	9.34	Gas	Gas Turbine	Planned	2010	
SPP	TX	ANTELOPE_A 113.800	A6	525841	9.444	9.34	Gas	Gas Turbine	Planned	2010	
SPP	TX	ANTELOPE_B 113.800	B1	525842	9.444	9.34	Gas	Gas Turbine	Planned	2010	
SPP	TX	ANTELOPE_B 113.800	B2	525842	9.444	9.34	Gas	Gas Turbine	Planned	2010	
SPP		ANTELOPE_B 113.800	B3	525842	9.444	9.34	Gas	Gas Turbine	Planned	2010	
SPP		ANTELOPE_B 113,800	B4 DE	525842	9.444	9.34	Gas	Gas Turbine	Planned	2010	
SDD		ANTELOPE_B 113.000	B6	525842	9.444	9.34	Gas	Gas Turbine	Planned	2010	
SPP	TX	ANTELOPE C 113 800	C1	525843	9 444	9.34	Gas	Gas Turbine	Planned	2010	
SPP	TX	ANTELOPE C 113.800	C2	525843	9.444	9.34	Gas	Gas Turbine	Planned	2010	
SPP	TX	ANTELOPE_C 113.800	C3	525843	9.444	9.34	Gas	Gas Turbine	Planned	2010	
SPP	TX	ANTELOPE_C 113.800	C4	525843	9.444	9.34	Gas	Gas Turbine	Planned	2010	
SPP	TX	ANTELOPE_C 113.800	C5	525843	9.444	9.34	Gas	Gas Turbine	Planned	2010	
SPP	TX	ANTELOPE_C 113.800	C6	525843	9.444	9.34	Gas	Gas Turbine	Planned	2010	
SPP	MO	MAC GT3&4 113.800	1	549894	50	50	Gas/Oil	Combustion Turbine	Planned	2018	
SPP	MO	MAC G13&4 113.800	2	549894	50	50	Gas/Oil	Combustion Turbine	Planned	2018	
SPP	NE	DETERCIV 24 E00	1	640428	080	0	Wind	Wind Turbine	Planned	2010	
SPP	NE	EGYCTR2G 22 000	2	641089	232.1	232	Coal	Steam Turbine	Planned	2010	
SPP	TX	JONES 3	1	526333	243	243	Gas	Steam Turbine	Planned	2012	
SPP	NE	CROFTON HILLS	1	640421	42	0	Wind	Wind Turbine	Planned	2009	
SPP	MO	SOUTHWEST 2	2	549893	275	275	Coal/Gas		Planned	2010	
TVA	TN	Watts Bar Nuclear 2	2	364022	1204	1204	Nuclear	Steam Turbine	Under Construction	13-Jun	
TVA	AL	Bellefonte Nuclear 1	1	364031	1192	1192	Nuclear	Steam Turbine	Planned	18-Jun	
		Lagoon Creek CC Turbine 1		364301	160	160	Gas	Combined Cycle	Under Construction	10-Oct	
		Lagoon Creek CC Stoom Turbino	1	364302	220	220	Gas	Combined Cycle	Under Construction	10-UCI	
T\/A	TN	Iohn Sevier CC Turbine 1	1	364203	165	145	Gas	Combined Cycle	Under Construction	10-ULI 12-Jan	
TVA	TN	John Sevier CC Turbine 2	2	364322	165	165	Gas	Combined Cycle	Under Construction	12-Jan	
TVA	TN	John Sevier CC Turbine 3	3	364323	165	165	Gas	Combined Cycle	Under Construction	12-Jan	
TVA	TN	John Sevier CC Steam Turbine	4	364324	383	383	Gas	Combined Cycle	Under Construction	12-Jun	

Appendix D: Linear Transfer Analysis Results

Transfer	FCITC (MW)	Limiting PA	Limiting Facility	Rating (MVA)	TDF (%)	LODF (%)	Cont.PA	Contingency / Outaged Facility
----------	---------------	----------------	-------------------	-----------------	---------	----------	---------	--------------------------------

No data has been provided.

Appendix D: Summary of Incremental Transfer Capabilities
Transfers to Subsystem B

Transfer	FCITC (MW)	Limiting PA	Limiting Facility	Rating (MVA)	TDF (%)	LODF (%)	Cont.PA	Contingency / Outaged Facility
	-3900	PJM DIM MISO	270809 LISLE; R 345 270811 LOCKP; R 345 1	1528	-3.7	32.9	PJM	270808 LISLE; B 345 270810 LOCKP; B 345 1
	700	PJIM-INISU	270864 QUAD3-11 345 631141 RUCK CK3 345 1	1088	3.7	-16.9	MISO	636420 TIEFIN 3 345 636420 TIEFIN 5 345 1
						-16.7	MISO	631148 MORGANV3 345 636420 TIFFIN 3 345 1
	750	PJM	200004 CNASTONE 500 200013 PEACHBTM 500 1	2815	-9.4	46.6	PJM	200004 CNASTONE 500 200026 HUNTERTN 500 1
	850	PJM-MISO	270864 QUAD3-11 345 631141 ROCK CK3 345 1	1088	3.7	-19.6	MISO R IM MISO	631148 MORGANV3 345 636420 TIFFIN 3 345 1
	950	P JIVI-IVII3O	2/0804 QUADS-11 345 651141 ROCK CK3 3451	1000	3.5	-24.0	MISO	636610 SUB 91 3 345 636611 SB 91 5 161 1
						-2.5	MISO	636610 SUB 91 3 345 636615 SB 56 3 345 1
	1100	PJM	270809 LISLE; R 345 270811 LOCKP; R 345 1	1528	-3.6	-41.5	PJM	270811 LOCKP; R 345 270849 PLANO;TR 345 1
	4000			400	0.7	15.7	PJM	270813 LOMBA; R 345 270849 PLANO;TR 345 1
	2000	NYISO-PJM NYISO-PJM	130836 N.WAV115 115 200676 E.SAYRE 115 1	128	6.6	28.6	NYISO-PJM	130763 HILSD230 230 200675 E.TWANDA 230 1 130763 HILSD230 230 131154 STONY RIDGE 230 1
						-5.2	NYISO	130763 HILSD230 230 131230 HILSD M4 34.5 1
						0.3	NYISO	130814 HILSD115 115 131230 HILSD M4 34.5 1
						15.1	NYISO	131194 HILSD 34 34.5 131230 HILSD M4 34.5 1
	2200	NYISO-PJM	130836 N.WAV115 115 200676 E.SAYRE 115 1	128	6.4	12.7	NYISO	130763 HILSD230 230 200675 E.TWANDA 230 1
						-3.2	NYISO	130763 HILSD230 230 131193 HILSD M3 34.5 1
						20.6	NYISO	130814 HILSD115 115 131193 HILSD M3 34.5 1
	0.400			400	5.0	34.9	NYISO-PJM	130763 HILSD230 230 200675 E.TWANDA 230 1
	2400	NTISO-PJM	130807 WESTOVER115 115 200680 LAURELL 115 1	128	5.2	15.2	NYISO-PJM	130763 HILSD230 230 200675 E.TWANDA 230 1 130836 N.WAV115 115 200676 E.SAYRE 115 1
	2800	PJM	270809 LISLE; R 345 270811 LOCKP; R 345 1	1528	-3.1	-37.9	PJM	270788 JO 29; B 345 270810 LOCKP; B 345 1
	2900	NYISO-PJM	135277 FALCONER 115 200579 WARREN 115 1	118	4.7	20.2	NYISO-PJM	135251 \$ RIPLEY 230 200654 ERIE E 230 1
	2900	MISO-PJM	256019 18PALISD 345 292292 T-94B 345 1	1859	9.8	-44.8	PJM	243215 05COOK 345 292290 T-94A 345 1
	2900	РЈМ	200679 TIFFANY 115 200680 LAUREL L 115 1	149	-5.2	-15.2	NYISO-PJM	130763 HILSD230 230 200675 E.TWANDA 230 1 130836 N.WAV115 115 200676 E.SAVRE 115 1
	2900	NYISO-PJM	135277 FALCONER 115 200579 WARREN 115 1	118	4.7	11.1	NYISO-PJM	SB:SRIPLEY 230 R102>R202>R302
C to B	3000	NYISO-PJM	130807 WESTOVER115 115 200680 LAUREL L 115 1	128	4.1	-3.6	NYISO	130763 HILSD230 230 130768 WATRC230 230 1
						0.1	NYISO	130763 HILSD230 230 131193 HILSD M3 34.5 1
						0.9	NYISO-P IM	130814 HILSD115 115 131193 HILSD M3 34.5 1 130763 HILSD230 230 200675 F TWANDA 230 1
	3000	NYISO-PJM	135277 FALCONER 115 200579 WARREN 115 1	118	4.7	0.2	NYISO	SB:RWFLD 230
	3000	PJM	200674 TOWANDA 115 200676 E.SAYRE 115 1	131	-6.6	-1.5	NYISO	130763 HILSD230 230 131154 STONY RIDGE 230 1
						5.2	NYISO	130763 HILSD230 230 131230 HILSD M4 34.5 1
						-0.3	NYISO	130814 HILSD115 115 131230 HILSD M4 34.5 1
						-13.1	NYISO-PJM	130763 HILSD 34 34.5 131230 HILSD M4 34.5 1
	3000	MISO-PJM	256019 18PALISD 345 292292 T-94B 345 1	1409	7.2			Base Case
	3000	PJM	200674 TOWANDA 115 200676 E.SAYRE 115 1	131	-6.7	-28.6	NYISO-PJM	130763 HILSD230 230 200675 E.TWANDA 230 1
	3100	IESO	160064 LAMBTON_T7T8 220 160069 LAMBTON_P2K2 220 S4	845	-45.8	67.3	IESO-MISO	160065 LAMBTON_L51D 220 264830 19STCPP 220 1
	3100	IESO	160064 LAMBTON_1718 220 160069 LAMBTON_P2K2 220 S4	845	-45.8	67.3	IESO-MISO	160065 LAMBTON L51D 220 264830 19STCPP 220 1
						-47.2	IESO	160059 LAMBTON_P1K1 220 160638 LAMBTON_D 27.6 T5
	3100	NYISO-PJM	130807 WESTOVER115 115 200680 LAUREL L 115 1	128	4	1.7	NYISO	130763 HILSD230 230 131154 STONY RIDGE 230 1
						1.2	NYISO	130763 HILSD230 230 131230 HILSD M4 34.5 1
						2.4	NYISO	131194 HILSD 34 34.5 131230 HILSD M4 34.5 1
						10.5	NYISO-PJM	130763 HILSD230 230 200675 E.TWANDA 230 1
	3300	IESO	160059 LAMBTON_P1K1 220 160065 LAMBTON_L51D 220 51	845	42.8	-62.9	IESO-MISO	160050 LAMBTON_L4D 345 264656 19STCPP 345 1
	3300	PJM	200674 TOWANDA 115 200676 E.SAYRE 115 1	131	-6.4	-12.7	NYISO	130763 HILSD230 230 130768 WATRC230 230 1 130763 HILSD230 230 131193 HILSD M3 24 5 1
						-20.6	NYISO	130703 HILSD230 230 131193 HILSD M3 34.5 1
						-34.9	NYISO-PJM	130763 HILSD230 230 200675 E.TWANDA 230 1
	3300	IESO	160059 LAMBTON_P1K1 220 160065 LAMBTON_L51D 220 51	845	42.8		IESO-MISO	L4D
	3400	PJM	200004 CNASTONE 500 200013 PEACHBIM 500 1 160059 LAMPTON P1K1 220 160065 LAMPTON L51D 220 51	2338	-8.5	.62.0	IESO	Base Case
	3400	PJM	200004 CNASTONE 500 200013 PEACHBTM 500 1	2815	-9.2	-40.7	PJM	200005 CONEM-GH 500 200026 HUNTERTN 500 1
	-4800	PJM	270809 LISLE; R 345 270811 LOCKP; R 345 1	1528	-3.1	32.9	PJM	270808 LISLE; B 345 270810 LOCKP; B 345 1
	650	PJM-MISO	270864 QUAD3-11 345 631141 ROCK CK3 345 1	1088	4	20	MISO	636400 HILLS 3 345 636420 TIFFIN 3 345 1
						-16.9	MISO	631148 MORGANV3 345 636420 TIFFIN 3 345 1
	750	PJM	200004 CNASTONE 500 200013 PEACHBTM 500 1	2815	-9.5	46.6	PJM	200004 CNASTONE 500 200026 HUNTERTN 500 1
	800	PJM-MISO	270864 QUAD3-11 345 631141 ROCK CK3 345 1	1088	4	-19.6	MISO R IM MISO	631148 MORGANV3 345 636420 TIFFIN 3 345 1
1	000			1008	3.9	-24.8	MISO	636610 SUB 91 3 345 636611 SB 91 5 161 1
D to B						-2.5	MISO	636610 SUB 91 3 345 636615 SB 56 3 345 1
	2700	PJM	200004 CNASTONE 500 200013 PEACHBIM 500 1 200004 CNASTONE 500 200013 PEACHBIM 500 1	2338	-10.4	-40.7	PIM	Base Case
	4000	MISO	636400 HILLS 3 345 636420 TIFFIN 3 345 1	1022	3.6	-21.2	MISO	631140 SALEM 3 345 631141 ROCK CK3 345 1
	4200	MISO	636400 HILLS 3 345 636420 TIFFIN 3 345 1	1022	3.5	-15.7	PJM-MISO	270864 QUAD3-11 345 631141 ROCK CK3 345 1
	4300	PJM	270809 LISLE; R 345 270813 LOMBA; R 345 1 631148 MORGANV3 345 636420 TIFEIN 3 345 1	1341	-3.8	40.2	PJM MISO	270808 LISLE; B 345 270812 LOMBA; B 345 1 631140 SALEM 3 345 631141 ROCK CK3 345 1
	4700	MISO	636400 HILLS 3 345 636420 TIFFIN 3 345 1	1022	3.1	22.0	MISO	3Wnd: B\$0120 1
L	4900	MISO	698928 WERNER W 345 699359 N APPLETON 345 1	912	-3.4		MISO	ITCM-B102-NW-LAKEFIELD_SPS
1	900	PJM-MISO	270864 QUAD3-11 345 631141 ROCK CK3 345 1	1088	3	20	MISO	636400 HILLS 3 345 636420 TIFFIN 3 345 1 636420 TIFFIN 3 345 636421 TIFFIN 5 161 1
1						-16.7	MISO	631148 MORGANV3 345 636420 TIFFIN 3 345 1
1	1000	PJM-MISO	270864 QUAD3-11 345 631141 ROCK CK3 345 1	1088	3	-19.6	MISO	631148 MORGANV3 345 636420 TIFFIN 3 345 1
1	2800	MISO	345435 /PALM TAP 345 345992 7SPENCER 345 1 345435 7PALM TAP 345 345992 7SPENCER 345 1	908	-3.9	25	MISO	345088 /MCCREDIE 345 345230 /MONTGMRY 345 1 345088 /MCCREDIE 345 345408 /OV/ERTON 345 1
E to B	2300			300	-4	26.4	MISO	345088 7MCCREDIE 345 345230 7MONTGMRY 345 1
1	4200	MISO	636400 HILLS 3 345 636420 TIFFIN 3 345 1	1022	3.4	-21.2	MISO	631140 SALEM 3 345 631141 ROCK CK3 345 1
1	4500	MISO	636400 HILLS 3 345 636420 TIFFIN 3 345 1	1022	3.3	-15.7	PJM-MISO	270864 QUAD3-11 345 631141 ROCK CK3 345 1 345667 7RUSH 1 345 345857 7TVSON 2 345 1
1	4800	MISO	636400 HILLS 3 345 636420 TIFFIN 3 345 1	1022	-3.1	-57.6	MISO	3Wnd: B\$0120 1
1	4900	MISO	631148 MORGANV3 345 636420 TIFFIN 3 345 1	961	-3.6	22.3	MISO	631140 SALEM 3 345 631141 ROCK CK3 345 1
 	4900	MISO	345435 7PALM TAP 345 345992 7SPENCER 345 1	908	-3.5	-15.8	MISO	347679 7MEREDOSIA 345 347962 7PAWNEE 345 1
1	3300	MISO	345435 7PALM TAP 345 345992 7SPENCER 345 1	908	-3.5	-29.2	MISO	345088 7MCCREDIE 345 345408 7OVERTON 345 1
1						26.4	MISO	345088 7MCCREDIE 345 345230 7MONTGMRY 345 1
F to B	3300	MISO	345435 7PALM TAP 345 345992 7SPENCER 345 1	908	-3.3	25	MISO	345088 7MCCREDIE 345 345230 7MONTGMRY 345 1

Appendix D: Summary of Incremental Transfer Capabilities Transfers to Subsystem B

Transfer	FCITC (MW)	Limiting PA	Limiting Facility	Rating (MVA)	TDF (%)	LODF (%)	Cont.PA	Contingency / Outaged Facility
1.00	3900	TVA	360065 8WID CRK FP 500 360081 8SEQUOYAH NP 500 1	1732	5		PJM	SURRY_UNIT1_UNIT2
	4000	MISO	345435 7PALM TAP 345 345992 7SPENCER 345 1	908	-4.6		PJM-MISO	SPS-2105&U1
	4700	SPP	541199 ST JOE 3 345 542982 IATAN 7 345 1	1136	-8.7	48.2	SPP	542980 NASHUA 7 345 542982 IATAN 7 345 1
	4800	SPP	532765 HOYT 7 345 532766 JEC N 7 345 1	1076	-5.1	41.8	SPP	532851 AUBURN 6 230 532852 JEC 6 230 1

Appendix D: Summary of Incremental Transfer Capabilities Transfers to Subsystem C

Transfer	FCITC (MW)	Limiting PA	Limiting Facility	Rating (MVA)	TDF (%)	LODF (%)	Cont.PA	Contingency / Outaged Facility
	1902.1	PJM	200674 TOWANDA 115 200676 E.SAYRE 115 1	131.0	0.0651	-	NY	C:SB:Hillside_230_B312
	1962.2	PJM	200674 TOWANDA 115 200676 E.SAYRE 115 1	131.0	0.0681	-	NY	C:SB:Hillside_230_B412
	2032.5	PJIVI NV/D IM	2006/4 TOWANDA 115 2006/6 E.SATRE 115 1	-119.0	0.0683	-	PJM	C:B_PN230-5X-#8 C:SB:DLINK#220_B1402-B1502-B1452-B1552
	2548.5	NY/PJM	135277 FALCONER 115 200579 WARREN 115 1	-118.0	-0.0476	-	NY	C:SB:DUNK 230 R1402>R1502>R1452>R1552@CY10
	2817.9	IESO	160064 LAMBTON_T7T8 220 160069 LAMBTON_P2K2 220 S4	845.0	0.4451	-	ITC	C:264656 19STCPP 345 264830 19STCPP 220 1
	2818.3	IESO	160064 LAMBTON_T7T8 220 160069 LAMBTON_P2K2 220 S4	845.0	0.4451	-	IESO/ITC	C:160065 LAMBTON_L51D 220 264830 19STCPP 220 1
	2824.6	IESO	160064 LAMBTON_T7T8 220 160069 LAMBTON_P2K2 220 S4	845.0	0.4419	-	IESO	C:LAMBT_L23L51
	2832.7	NY/PJM	130836 N.WAV115 115 200676 E.SAYRE 115 1	-128.0	-0.0651	-	NY DIM	C:SB:Hillside_230_B312
	2852.3	NY/PJM	130836 N.WAV115 115 200676 E.SAYRE 115 1	-128.0	-0.0681	-	NY	C:SB:Hillside 230 B412
	2920.0	NY/PJM	130836 N.WAV115 115 200676 E.SAYRE 115 1	-128.0	-0.0683	-	PJM	C:B_PN230-SX-#8
	2934.4	IESO	160059 LAMBTON_P1K1 220 160065 LAMBTON_L51D 220 51	-845.0	-0.4161	-0.62511	IESO	C:LAMBT_KL4
	2934.4	IESO	160059 LAMBTON_P1K1 220 160065 LAMBTON_L51D 220 51	-845.0	-0.4161	-	IESO/ITC	C:160050 LAMBTON_L4D 345 264656 19STCPP 345 1
	2982.3	IESO	160059 LAMBTON_P1K1 220 160065 LAMBTON_L51D 220 51	-845.0	-0.4161	-	IESO	C:L4D C:Relay ETHS E Towarda Hillaida y tria 056
	3447 1	PJIM P.IM	200678 LENOX 115 200679 TIFFANT 115 1	150.0	0.0340	-	NY NY	C.SB:Oakdale 345 36-3122 no-sps
	3486.4	IESO/ITC	160050 LAMBTON L4D 345 264656 19STCPP 345 1	-1188.0	-0.4451	-	ITC	C:264656 19STCPP 345 264830 19STCPP 220 1
	3486.7	IESO/ITC	160050 LAMBTON_L4D 345 264656 19STCPP 345 1	-1188.0	-0.4451	-	IESO/ITC	C:160065 LAMBTON_L51D 220 264830 19STCPP 220 1
	3498.0	IESO/ITC	160050 LAMBTON_L4D 345 264656 19STCPP 345 1	-1188.0	-0.4419	-	IESO	C:LAMBT_L23L51
	3521.8	PJM	200706 N.MESHPN 230 200825 MESH2REA 115 3	188.0	0.0519	-	PJM	C:B_PN230-SX-#11
	3522.0	PJM NV/PIM	2006/7 NO MESHO 115 200825 MESH2REA 115 3 130807 WESTOVER115 115 200680 LAURELL 115 1	-188.0	-0.0519	-	PJM NV/P IM	C:B_PN230-SX-#11 C:Relay:ETHS E Towanda-Hillside x-trip 956
	3557.9	IESO/ITC	160065 LAMBTON L51D 220 264830 19STCPP 220 1	-1141.0	-0.4161	-0.62511	IESO	C:LAMBT KL4
	3557.9	IESO/ITC	160065 LAMBTON_L51D 220 264830 19STCPP 220 1	-1141.0	-0.4161	-	IESO	C:160050 LAMBTON_L4D 345 264656 19STCPP 345 1
	3576.8	PJM	200677 NO MESHO 115 200678 LENOX 115 1	179.0	0.0532	-	NY/PJM	C:Relay:ETHS E.Towanda-Hillside x-trip 956
	3605.9	IESO/ITC	160065 LAMBTON_L51D 220 264830 19STCPP 220 1	-1141.0	-0.4161	-	IESO	
B to C	3736.6	NV/D IM	264604 198LRPP 345 264656 19STCPP 345 1 120762 HILSD220 220 200675 E TM/ANDA 220 1	1974.0	0.4048	-	IESU NV/D IM	C:GEN: 2 BRUCE Units B7&B8 C:Bolou:Homor City/Watercure x-trip 956
	3730.3	ITC	264604 19BLRPP 345 264656 19STCPP 345 1	1974.0	0.3612	-	ITC	C:264604 19BLRPP 345 264888 19LENOX 345 1
	3750.5	NY/PJM	130807 WESTOVER115 115 200680 LAUREL L 115 1	-128.0	-0.0355	-	NY	C:SB:Oakdale_345_36-3122_no-sps
	3819.3	PJM	200677 NO MESHO 115 200678 LENOX 115 1	179.0	0.0355	-	NY	C:SB:Oakdale_345_36-3122_no-sps
	3830.4	PJM	200679 TIFFANY 115 200680 LAUREL L 115 1	149.0	0.0532	-	NY/PJM	C:Relay:ETHS E. Lowanda-Hillside x-trip 956
	3965.2	ITC	264604 19BLRPP 345 264656 19STCPP 345 1	1656.0	0.4048	-	INT	C.3B.Hillside_230_6412 Base Case
	3975.9	PJM	200708 OXBOW 230 208009 LACK 230 1	-617.0	-0.1224	-	PJM	C:PJM JEFF-LACK 500_B
	3975.9	PJM	200708 OXBOW 230 208009 LACK 230 1	-617.0	-0.1224	-	PJM	C:PJM JEFF-LACK 500_A
	4097.2	PJM	200708 OXBOW 230 208009 LACK 230 1	-617.0	-0.1435	-	PJM	C:B_PN345-SX-#8
	4109.7	PJIM P.IM	2007/1 NO MESHO 115 200678 LENOX 115 1 2007/06 N MESHPN 230 200708 OXBOW 230 1	-608.0	-0.1201	-	P.IM	C:P.IM.IEEE-I ACK 500 B
	4132.1	PJM	200706 N.MESHPN 230 200708 OXBOW 230 1	-608.0	-0.1201	-	PJM	C:PJM JEFF-LACK 500_A
	4174.1	NY/PJM	130757 WATRC345 345 200769 HOMER CY 345 1	-927.0	-0.1119	-	NE	C:HVDC_PHASE_2
	4199.0	NY/PJM	130757 WATRC345 345 200769 HOMER CY 345 1	-927.0	-0.1231	-	NY	C:TWR:67&37_Stolle-Sheldon
	4199.3	PJM NV/P IM	200679 TIFFANY 115 200680 LAUREL L 115 1 130763 HILSD230 230 200675 E TWANDA 230 1	-531.0	-0.1302	-	NY NY/PIM	C:SB:Uakdale_345_36-3122_no-sps C:Relay:HomerCity.Watercure x-tripWE_171
	4225.9	NY/PJM	130807 WESTOVER115 115 200680 LAUREL L 115 1	-128.0	-0.0413	-	NY	C:SB:Hillside_230_B412
	4229.8	PJM	200706 N.MESHPN 230 200708 OXBOW 230 1	-478.0	-0.1236	-		Base Case
	4253.2	NY/PJM	130757 WATRC345 345 200769 HOMER CY 345 1	-927.0	-0.1365	-	NY/PJM	C:Relay:ETHS E.Towanda-Hillside x-trip 956
	4300.4	IESO/ITC	160058 KEITH J5D PS 230 264690 19WTRMN 230 1	-416.0	-0.0311	-0.10856	IESO	C.LAMBT KL4
	4427.0	IESO/ITC	160058 KEITH_J5D_PS 230 264690 19WTRMN 230 1	-416.0	-0.0311	-	IESO/ITC	C:160050 LAMBTON_L4D 345 264656 19STCPP 345 1
	4585.6	IESO/ITC	160058 KEITH_J5D_PS 230 264690 19WTRMN 230 1	-416.0	-0.0311	-0.10856	IESO	C:LAMBT_PS4
	4611.4	PJM IESO/ITC	200679 TIFFANY 115 200680 LAUREL 115 1 160063 SCOTT TS 220 264883 19B3N PS 220 1	-498.0	0.0413	-	NY IESO	C:SB:Hillside_230_B412 C:LAMBT_KL4
	4827.0	IESO/ITC	160063 SCOTT_TS 220 264883 19B3N PS 220 1	-498.0	-0.0367	-	IESO/ITC	C:160050 LAMBTON_L4D 345 264656 19STCPP 345 1
	4962.7	IESO/ITC	160063 SCOTT_TS 220 264883 19B3N PS 220 1	-498.0	-0.0367	-	IESO	C:L4D
	1641.0	PJM	200674 TOWANDA 115 200676 E.SAYRE 115 1	131.0	0.0755	-	NY	C:SB:Hillside_230_B312 C:SB:Hillside_230_B412
	1768.2	PJM	200674 TOWANDA 115 200676 E.SAYRE 115 1	131.0	0.0785	-	PJM	C:B_PN230-SX-#8
	2040.9	NY/PJM	135277 FALCONER 115 200579 WARREN 115 1	-80.0	-0.0332	-		Base Case
	2040.9	NY/PJM	135277 FALCONER 115 200579 WARREN 115 1	-80.0	-0.0332	-		Base Case
	2443.8	NY/PJM	130836 N.WAV115 115 200676 E.SAYRE 115 1	- <u>128</u> .0	-0.0755	-	NY	C:SB:Hillside_230_B312
	2484.2	NY/PJM	130836 N.WAV115 115 200676 E.SAYRE 115 1	-128.0	-0.0782	-	NY	C:SB:Hillside_230_B412
1	∠540.3 2902.4	NY/PJM PJM	200678 LENOX 115 200679 TIFFANY 115 1	-128.0 150.0	-0.0785	-	PJM NY/PJM	C.D_FIN23U-5X-#8 C:Relay:ETHS E.Towanda-Hillside x-trin 956
	3048.6	PJM	200706 N.MESHPN 230 200825 MESH2REA 115 3	188.0	0.0600	-	PJM	C:B_PN230-SX-#11
	3048.8	PJM	200677 NO MESHO 115 200825 MESH2REA 115 3	-188.0	-0.0600	<u> </u>	PJM	C:B_PN230-SX-#11
	3066.3	PJM NY/P.IM	200678 LENOX 115 200679 HEFANY 115 1 130807 WESTOVER115 115 200680 LAURELL 115 1	-128.0	-0.0610	-	NY/P.IM	C:SB:Uakdale_345_36-3122_n0-sps C:Relay:ETHS E Towanda-Hillside x-trip 956
	3119.1	PJM	200677 NO MESHO 115 200678 LENOX 115 1	179.0	0.0610	-	NY/PJM	C:Relay:ETHS E.Towanda-Hillside x-trip 956
	3257.1	IESO	160059 LAMBTON_P1K1 220 160065 LAMBTON_L51D 220 51	-845.0	-0.3749	-0.62511	IESO	
	3291.6	NY/PJM	130763 HILSD230 230 200675 E.TWANDA 230 1	-845.0	-0.3749	-	NY/PJM	C:T60050 LAMBTON_L4D 345 264656 19STCPP 345 1 C:Relay:Homer City-Watercure x-trip 956
	3310.4	IESO	160059 LAMBTON_P1K1 220 160065 LAMBTON_L51D 220 51	-845.0	-0.3749	-	IESO	C:L4D
	3312.6	PJM	200678 LENOX 115 200679 TIFFANY 115 1	112.0	0.0333	<u> </u>	NV	Base Case
	3340.3	PJM	200679 TIFFANY 115 200680 LAUREL L 115 1	-128.0	0.0610	-	NY/PJM	C:SB:Oakdale_545_56-5122_10-sps C:Relay:ETHS E.Towanda-Hillside x-trip 956
	3397.5	PJM	200677 NO MESHO 115 200678 LENOX 115 1	179.0	0.0399	-	NY	C:SB:Oakdale_345_36-3122_no-sps
	3405.2	PJM PIM	200708 OXBOW 230 208009 LACK 230 1	-617.0	-0.1429	<u>-</u>	PJM	C:PJM JEFF-LACK 500_B
	3493.0	PJM	200708 OXBOW 230 200009 LACK 230 1 200708 OXBOW 230 208009 LACK 230 1	-017.0	-0.1429	-	FJIVI	Base Case
D to C	3537.4	PJM	200706 N.MESHPN 230 200708 OXBOW 230 1	-608.0	-0.1403	-	PJM	C:PJM JEFF-LACK 500_B
	3537.4	PJM P.IM	200706 N.MESHPN 230 200708 OXBOW 230 1 200706 N.MESHPN 230 200708 OXBOW 230 1	-608.0	-0.1403	-	PJM	C:PJM JEFF-LACK 500_A Base Case
	3598.7	PJM	200677 NO MESHO 115 200678 LENOX 115 1	136.0	0.0348	-		Base Case
	3694.7	NY/PJM	130807 WESTOVER115 115 200680 LAUREL L 115 1	-128.0	-0.0473	-	NY	C:SB:Hillside_230_B412
	3708.4	NY/PJM P,IM	130763 HILSD230 230 200675 E.TWANDA 230 1 200679 TIFFANY 115 200680 LAUREL 1 115 1	-531.0 149.0	-0.1479	-	NY/PJM NY	C:Relay:HomerCity-Watercure x-tripWF_171 C:SB:Oakdale_345_36-3122_no-sps
	3784.5	NY/PJM	130763 HILSD230 230 200675 E.TWANDA 230 1	-531.0	-0.1453	-	PJM	C:B_PN345-SX-#8
	3869.9	IESO/ITC	160050 LAMBTON_L4D_345 264656 19STCPP345_1	-1188.0	-0.4010	<u> </u>	ITC	C:264656 19STCPP 345 264830 19STCPP 220 1
	3884.0	IESO/ITC	160050 LAMBTON_L4D_345 264656 19STCPP 345 1	-1188.0	-0.4010	-	IESO/ITC	C:LAMBT_L23L51

Appendix D: Summary of Incremental Transfer Capabilities Transfers to Subsystem C

Transfer	FCITC (MW)	Limiting PA	Limiting Facility	Rating (MVA)	TDF (%)	LODF (%)	Cont.PA	Contingency / Outaged Facility	
	3949.3	IESO/ITC	160065 LAMBTON_L51D 220 264830 19STCPP 220 1	-1141.0	-0.3749	-0.62511	IESO	C:LAMBT_KL4	
	3949.3	IESO/ITC	160065 LAMBTON_L51D 220 264830 19STCPP 220 1	-1141.0	-0.3749	-	IESO/ITC	C:160050 LAMBTON_L4D 345 264656 19STCPP 345 1	
	4002.5	IESO/ITC	160065 LAMBTON_L51D 220 264830 19STCPP 220 1	-1141.0	-0.3749	-	IESO	C:L4D	
	4011.8	NY/PJM	130757 WATRC345 345 200769 HOMER CY 345 1	-927.0	-0.1447	-	NY/PJM	C:Relay:ETHS E.Towanda-Hillside x-trip 956	
	4015.0	NY/PJM	130757 WATRC345 345 200769 HOMER CY 345 1	-927.0	-0.1164	-	NE	C:HVDC_PHASE_2	
	4028.7	NY/PJM	130757 WATRC345 345 200769 HOMER CY 345 1	-927.0	-0.1283	-	NY	C:TWR:67&37_Stolle-Sheldon	
	4031.7	PJM	200679 TIFFANY 115 200680 LAUREL L 115 1	149.0	0.0473	-	NY	C:SB:Hillside_230_B412	
	4216.6	ITC	264604 19BLRPP 345 264656 19STCPP 345 1	1974.0	0.3587	-	IESO	C:GEN: 2 BRUCE Units B7&B8	
	4268.1	ITC	264604 19BLRPP 345 264656 19STCPP 345 1	1974.0	0.3171	-	ITC	C:264604 19BLRPP 345 264888 19LENOX 345 1	
	4476.6	ITC	264604 19BLRPP 345 264656 19STCPP 345 1	1656.0	0.3587	-		Base Case	
	4694.4	PJM	200675 E.TWANDA 230 200706 N.MESHPN 230 1	-549.0	-0.1228	-	PJM	C:B_PN230-SX-#7	
	4857.4	PJM	200674 TOWANDA 115 200675 E.TWANDA 230 2	-279.0	-0.0441	-	NY	C:SB:Hillside_230_B412	
	4857.6	PJM	200675 E.TWANDA 230 200706 N.MESHPN 230 1	-549.0	-0.1205	-	PJM	C:B_PN345-SX-#8	
	4869.1	PJM	200675 E.TWANDA 230 200706 N.MESHPN 230 1	-549.0	-0.1203	-	NY/PJM	C:Relay:HomerCity-Watercure x-tripWF_171	
	4895.6	PJM	200674 TOWANDA 115 200675 E.TWANDA 230 2	-279.0	-0.0429	-	NY	C:SB:Hillside_230_B312	
	4899.0	PJM	200674 TOWANDA 115 200675 E.TWANDA 230 2	-279.0	-0.0442	-	PJM	C:B_PN230-SX-#8	

Appendix D: Summary of Incremental Transfer Capabilities
Transfers to Subsystem D

Transfer	FCITC (MW)	Limiting PA	Limiting Facility	Rating (MVA)	TDF (%)	LODF (%)	Cont.PA	Contingency / Outaged Facility
	4400	IESO	Lambton T7T8 - Lambton P2K2 220 kV Ckt S4	845.0	4.8%	67.3%	IESO	Lambton L51D 51 - Lambton P1K1 220 kV Ckt 1
B to D	4700	IESO	Lambton T7T8 - Lambton P2K2 220 kV Ckt S4	845.0	4.8%		IESO	Lambton_L51D - St. Clair 220 kV Ckt 1
0.00								Lambton P1K1 - Lambton L51D 220 kV Ckt 51
	8000	PJM-ATC	Zion 'Red' - Pleasant Prairie 345 kV Ckt 1	1334.0	9.0%	-	-	Base Case
	1700	NYISO-PJM	North Waverly - E. Sayre 115 kV Ckt 1	128.0	7.7%		NYISO-PJM	Hillside - East Towanda 230 kV Ckt 1
	1700	IESO	Sithe JV42H - Sithe V73RS 220 kV Ckt 1	334.6	4.3%	-	11/100	Base Case
	1700	NYISO-PJN	North Waverly - E. Sayre 115 kV Ckt 1	128.0	7.7%		NYISO	Hillside - Stony Ridge 230 kV Ckt 1
							NVISO	Hillside 230/34.5 KV CKL 1
							NYISO	Hillside M4 - Hillside M3 34 5 kV Ckt 1
							NYISO-PJM	Hillside - East Towanda 230 kV Ckt 1
	1900	NYISO-PJM	North Waverly - E. Savre 115 kV Ckt 1	128.0	7.5%		NYISO	Hillside - Watercure 230 kV Ckt 1
							NYISO	Hillside 230/34.5 kV Ckt 1
							NYISO	Hillside 115/34.5 kV Ckt 1
							NYISO-PJM	Hillside - East Towanda 230 kV Ckt 1
	2100	NYISO-PJM	Westover - Laurel Lake 115 kV Ckt 1	128.0	6.0%		NYISO-PJM	Hillside - East Towanda 230 kV Ckt 1
							NYISO-PJM	North Waverly - E. Sayre 115 Ckt 1
	2500	PJM	Tiffany - Laurel Lake 115 kV Ckt 1	149.0	6.0%		NYISO-PJM	Hillside - East Towanda 230 kV Ckt 1
							NYISO-PJM	North Waverly - E. Sayre 115 Ckt 1
	2500	PJM	Towanda East - E. Sayre 115 kV Ckt 1	131.0	7.8%		NYISO-PJM	Hillside - East Towanda 230 kV Ckt 1
	2600	NYISO-PJM	Westover - Laurel Lake 115 kV Ckt 1	128.0	4.7%		NYISO	Hillside - Watercure 230 kV Ckt 1
							NYISO	Hillside 230/34.5 kV Ckt 1
							NYISO DIM	Hillside 115/34.5 KV Ckt 1
	2600		Folgonor Worron 115 W/ Okt 1	110.0	E 40/		NVISO	HIISIDE - EAST TOWARDA 230 KV CKT 1 135351 S DIDLEV - 330 146150 OSE4DIDWEST 330 1
	2600	INTISO-PJI	Falcoher - Warren 115 KV CKt 1	118.0	5.4%		NVISO D IM	135251 S RIPLEY 230 146150 Q254RIPWEST 230 1
							NVISO	3. Ripley - Elle Edsi 230 KV GRU 1 135351 S PIPLEY 230 135370 NOPONGEN 115.1
							NYISO	135251 S RIPLET 230 146265 O271STLINEC 34 5 1
C to D	2600	NYISO-P IN	Falconer - Warren 115 kV Ckt 1	118.0	5.4%		NYISO-P IM	S Rinley - Frie Fact 230 kV Ckt 1
	2600	P.IM	Towanda East - E. Savre 115 kV Ckt 1	131.0	7.7%		NYISO	Hillside - Stony Ridge 230 kV Ckt 1
							NYISO	Hillside 230/34.5 kV Ckt 1
							NYISO	Hillside 115/34.5 kV Ckt 1
							NYISO	Hillside M4 - Hillside M3 34.5 kV Ckt 1
							NYISO-PJM	Hillside - East Towanda 230 kV Ckt 1
	2600	NYISO-PJM	Falconer - Warren 115 kV Ckt 1	118.0	5.4%		NYISO	146150 Q254RIPWEST 230 146151 Q254RIPWEST 34.5 1
							NYISO	135250 DUNKIRK 230 146150 Q254RIPWEST 230 1
							NYISO	135251 S RIPLEY 230 146140 Q254RIPWEST 230 1
	2600	MISO-PJM	Palisades - T94B 345 kV Ckt 1	1859.0	10.9%		PJM	T94A - Cook 345 kV Ckt 1
	2700	MISO-PJM	Palisades - 194B 345 kV Ckt 1	1409.0	8.0%	44.8%		Base Case
	2700	NYISO-PJN	Westover - Laurel Lake 115 kV Ckt 1	128.0	4.6%	-	NYISO-PJM	Hillside - East Towanda 230 kV Ckt 1
	2800	PJIVI	Towanda East - E. Sayre 115 KV CKt 1	131.0	7.5%	-	NYISO	Hillside - Watercure 230 KV Ckt 1
							NVISO	Hillside 230/34.5 KV CKt 1
							NVISO-P IM	Hillside - Fast Towarda 220 kV Ckt 1
	2800	P.IM-MISO	Bay Shore - Monroe Power Plant Units 3&4 345 kV Ckt	1544.0	14.8%		NYISO	Allen Junction - Lulu Site 345 kV Ckt 1
	2000			1011.0	1 1.070		NYISO	Lulu Site - Milan 345 kV Ckt 1
							NYISO	Lulu Site - Monroe Power Plant -Units 3&4 345 kV Ckt 1
	3100	PJM-MISO	Bay Shore - Monroe Power Plant Units 3&4 345 kV Ckt	1544.0	14.8%			Allen Junction - Lulu Site 345 kV Ckt 1
	3100	PJM	Tiffany - Laurel Lake 115 kV Ckt 1	149.0	4.8%		NYISO	Hillside - Watercure 230 kV Ckt 1
							NYISO	Hillside 230/34.5 kV Ckt 1
							NYISO	Hillside 115/34.5 kV Ckt 1
							NYISO-PJM	Hillside - East Towanda 230 kV Ckt 1
	3200	PJM	Tiffany - Laurel Lake 115 kV Ckt 1	111.0	3.4%	-		Base Case
	1700	Duke	Woodleaf - Pleasant Garden 500 kV Ckt 1	1904.3	5.5%	22.8%	Duke	McGuire - Antioch 500 kV Ckt 1
	2100	Duke	vvoodiear - Pleasant Garden 500 kV Ckt 1	1904.3	3.6%	18.6%	Duke-CPLE	Newport - Kichmond 500 kV Ckt 1
	2200	MISO	Spencer - Palm Tap 345 kV Ckt 1	908 0	4.9%	∠1.5% 25.0%	MISO	Montromery - McCredie 345 kV Ckt 1
	3600	MISO	Spencer - Palm Tap 345 kV Ckt 1	908.0	3.2%		MISO	McCredie - Overton 345 kV Ckt 1
E to D							MISO	Montgomery - McCredie 345 kV Ckt 1
	4000	Duke	Woodleaf - Pleasant Garden 500 kV Ckt 1	1904.3	3.6%	9.9%	CPLE	Richmond - Cumberland 500 kV Ckt 1
	4300	Duke	Woodleaf - Pleasant Garden 500 kV Ckt 1	1904.3	3.1%	-	PJM	Remove Unit 1 from Surry 1 22.0
							PJM	Remove Unit 2 from Surry 2 22.0
	4500	TVA	Widow Creek - Sequoyah 500 kV Ckt 1	1732.1	4.2%	29.2%	TVA	Brown's Ferry - Maury 500 kV Ckt 1
	4700	Duke	woodlear - Pleasant Garden 500 kV Ckt 1	1904.3	3.8%	9.8%	CPLE	Wake - Cumperiand 500 kV Ckt 1

Appendix D: Summary of Incremental Transfer Capabilities Transfers to Subsystem E

Transfer	FCITC (MW)	Limiting PA	Limiting Facility	Rating (MVA)	TDF (%)	LODF (%)	Cont.PA	Contingency / Outaged Facility
	650	PEF	403551 Central Florida – 403562 Citrus 500 kV		9.12	93.07	PEF	403559 Levy Plant – 403561 Central Florida South 500 kV
	750	SOCO	389001 McIntosh 230/115 kV XFMR	400	4.65	28.85	SC - SOCO	312721 Purrysburg – 389001 McIntosh 230 kV
	850	PEF	403551 Central Florida 500/230 kV XFMR #2	802	3.8	18.4	PEF	403551 Central Florida – 403561 Central Florida South 500 kV
	1000	PEF	403551 Central Florida – 403562 Citrus 500 kV	2598	6.43	35.88	PEF	403550 Brookridge – 403555 Crystal River 500 kV
	1000	PEF	403551 Central Florida 500/230 kV XFMR #2	802	4.75	31.1	PEF	403551 Central Florida 500/230 kV XFMR #4
	1100	PEF	403522 CR Plant – 403526 King Rd Tap 230 kV	492	8.75			BASE CASE PROBLEM
	1100	PEF	400123 Emerson – 400266 Midway 230 kV	526	3.36	9.19	PEF	400276 Midway - 400476 Poinsetta 500 kV
	1400	PEF	403173 Bronson – 403526 King Rd Tap 230 kV	492	8.75			BASE CASE PROBLEM
A to E	1500	SOCO	380022 Villa Rica 500/230 kV XFMR	1647	4.17	42.46	SOCO	380005 Union City – 380022 Villa Rica 500 kV
AIDE	1500	PEF	403522 Crystal River Plant – 403526 King Road Tap 230 kV	604	9.98	30.03	PEF – SEC	403528 Martin West – 407120 Silver Springs (North) 230 kV
	1500	PEF	403551 Central Florida – 403562 Citrus 500 kV	2598	12.55	49.67	PEF	403522 Crystal River Plant – 403526 King Rd Tap 230 kV
	1500	PEF	403522 Crystal River Plant – 403526 King Road Tap 230 kV	604	9.01	32.33	PEF	403551 Central Florida – 403562 Citrus 500 kV
	1600	PEF	403551 Central Florida – 403562 Citrus 500 kV	2598	12.55	49.67	PEF	403173 Bronson – 403526 King Road Tap 230 kV
	1700	PEF	403522 Crystal River Plant – 403526 King Road Tap 230 kV	604	10.27	34.24	PEF	403159 Archer – 403528 Martin West 230 kV
	1700	PEF	403522 Crystal River Plant – 403526 King Road Tap 230 kV	604	9.95	11.23	PEF	403521 Central Florida - 403525 Dallas 230 kV
	1700	PEF	403173 Bronson – 403526 King Road Tap 230 kV	604	9.98	30.03	PEF – SEC	403528 Martin West – 407120 Silver Springs (North) 230 kV
	1800	PEF	403173 Bronson – 403526 King Road Tap 230 kV	604	9.01	3.23	PEF	403551 Central Florida – 403562 Citrus 500 kV
	1800	PEF	403551 Central Florida 500/230 kV XFMR #4	840	4.75		PEF	403551 Central Florida 500/230 kV XFMR #2
	6700	AEP	242620 Danville – 242631 East Danville 138kV	275	34.86	11.03	AEP	242514 Jacksons Ferry – 242520 Jacksons Ferry 500kV
B to E	6700	AEP	242620 Danville – 242631 East Danville 138kV	275	34.86	11.03	AEP	242514 Jacksons Ferry – 306100 Antioch 500kV
	9200	CE	270941 Zion – 699432 Pleasant Prairie 345 kV	1334	7.85			BASE CASE PROBLEM
	600	PJM	200004 Conastone – 200013 Peach Bottom 500 kV	2815	11.65	46.64	PJM	200004 Conastone – 200026 Hunterstown 500 kV
	2400	PJM	200004 Conastone – 200013 Peach Bottom 500 kV	2338	12.06			BASE CASE PROBLEM
	2800	PJM	200004 Conastone – 200013 Peach Bottom 500 kV	2815	11.52	40.72	PJM	200005 Conemaugh – 200026 Hunterstown 500 kV
D to E	3400	LGEE	324107 Middletown – 324114 Trimble County 345 kV	1195	3.03	62.12	LGEE	324103 Buckner Dynegy – 324107 Middletown 345 kV
DIOE	4100	PJM	200004 Conastone – 200013 Peach Bottom 500 kV	2815	11		PJM	235634 Welton Springs – 235636 Kemptown 765 kV
	4200	PJM	200004 Conastone – 200013 Peach Bottom 500 kV	2815	11.2	25.6	PJM	200013 Peach Bottom – 200024 Limerick 500 kV
	4700	PJM	200004 Conastone – 200013 Peach Bottom 500 kV	2815	12.08	10.71	PJM	235101 Bedington- 235103 Black Oak 500 kV
	4800	PJM	200004 Conastone – 200013 Peach Bottom 500 kV	2815	12.15	33.76	PJM	200016 Three Mile Island – 204514 Three Mile Island 230 kV
	3800	EES – AEPW	338875 Patmos West SS – 503912 Fulton 115 kV	159	3.37	10.19	EES – AEPW	337376 Sarepta - 508809 Longwood 345 kV
F to E	3900	EES	338874 Lewisville – 338875 Patmos West SS 115 kV	159	3.37	10.19	EES – AEPW	337376 Sarepta - 508809 Longwood 345 kV
	4600	EES	337502 Couch – 338874 Lewisville 115 kV	160	3.37	10.19	EES – AEPW	337376 Sarepta - 508809 Longwood 345 kV

Appendix D: Summary of Incremental Transfer Capabilities Transfers to Subsystem F

Transfer	FCITC (MW)	Limiting PA	Limiting Facility	Rating (MVA)	TDF (%)	LODF (%)	Cont.PA	Contingency / Outaged Facility
	1953	SPP	505508 DARDANE5 161 505514 CLARKSV5 161 1	223	3.312	13.985	SERC-SPP	337909 8ANO 50 500 515305 FTSMITH8 500 1 19
	2659	EES-SPP	337904 5RUSL-S 161 505508 DARDANE5 161 1	416	5.827	23.913	SERC-SPP	337909 8ANO 50 500 515305 FTSMITH8 500 1 12
	2786	SPP	504440 BUFORD 5 161 505460 BULL SH5 161 1	167	3.072	-61.921	SERC-SPP	338814 5SOLAND# 161 505448 NORFORK5 161 1 19
	2951	EES-SPP	337909 8ANO 50 500 515305 FTSMITH8 500 1	1299	13.914	-22.975	SPP	509782 R.S.S7 345 509834 COGENT 7 345 1 8
	3013	SPP	504440 BUFORD 5 161 505460 BULL SH5 161 1	167	3.072	-61.921	SERC	338125 5MT HOM 161 338814 5SOLAND# 161 1 17
E to E	3096	EES-SPP	337909 8ANO 50 500 515305 FTSMITH8 500 1	1299	15.053	-45.598	SERC	337904 5RUSL-S 161 337905 5RUSL-E 161 1 16
L 101	3158	EES-SPP	337909 8ANO 50 500 515305 FTSMITH8 500 1	1299	13.913	-12.276	SPP	640011 GENTLM2G 24.0 640183 GENTLMN3 345 1 13
	3557	SPP	504440 BUFORD 5 161 505460 BULL SH5 161 1	-189	-3.072	61.921	SERC	338125 5MT HOM 161 338813 5MIDWAY# 161 1 17
	4108	EES-SPP	300867 5LBRTYT 161 505522 VAN BUR5 161 1	-189	-3.001	11.908	SPP	515224 MUSKOGE7 345 515302 FTSMITH7 345 1 9
	4349	EES-SPP	337902 5DANVI 161 507195 MAGZREC5 161 1	335	3.69	15.819	SERC-SPP	337909 8ANO 50 500 515305 FTSMITH8 500 1 12
	4573	SPP	507190 NMAGZIN5 161 507195 MAGZREC5 161 1	-335	-3.69	-15.819	SERC-SPP	337909 8ANO 50 500 515305 FTSMITH8 500 1 12
	4638	SPP	515341 WHITESD5 161 515343 MASSARD5 161 1	-312	-3.927	20.86	SPP	515224 MUSKOGE7 345 515302 FTSMITH7 345 1 9

Appendix E: Area Interchange Tables

Alcoa Power Generating

APGI - Yadkin DETAILED INTERCHANGE

APGI - Yadkin Interchange Schedule

Total Net Interchange

0 MW

Duke Energy Carolinas

DEC Balancing Authority Area Imports:

To Area #	To Area		
353	SEHA	(SEPA)	-155
340	CPLE	(NCEMC#1)	-150
355	SETH	(SEPA)	-113
340	CPLE	(NCEMC/Anson)	-60
346	SOUTHERN	(Seneca)	-31
		TOTAL IMPORTS	-509

DEC Balancing Authority Area Exports:

To Area # To Area

340	CPLE	(Broad River)	850
340	CPLE	(PEC-Rowan)	150
340	CPLE	(NCEMC/CNS)	105
340	CPLE	(NCEMC#2)	100
345	DVP	(NCEMC)	50
		TOTAL EXPORTS	1255

TOTAL IMPORTS/EXPORTS

746 MW

Notes:

- 1. Positive interchange indicates an export
- 2. Negative interchange indicates an import

Entergy Services

ENTERGY ELECTRIC SYSTEM BALANCING AUTHORITY ("EES") AREA INTERCHANGE Area (s) in the case that make up the EES: 351

EIPC 2020 Summer Future Year Study

<u>Littergy</u> Duluiter	<u></u>		
	SWPA	1440190 (SPA - AECC)	-100 MW
	SWPA	1448044 (SPA - Thayer)	-4 MW
	SWPA	1602650 (SPA - BRAZOS)	-3 MW
	AEPW	1084342 (AEPW - ETEC)	-50 MW
	AEPW	AEPW Load on EES	-5 MW
	OKGE	1348508 (OKGE - MDEA)	-10 MW
	LAGN	569011 (Big Cajun - EES)	-242 MW
	LAGN	851493 (Big Cajun - SMEPA)	-13 MW
	LAGN	1477069 (Big Cajun - EES)	-10 MW
	TVA	850239 (TVA - MEAM)	-19 MW
	TVA	1096986 (TVA Load on EES)	-30 MW
	TVA	1161925 (TVA - MDEA)	-11 MW
	SMEPA	810234 (SMEPA - SMEPA load)	<u>-642 MW</u>
	Total		-1139 MW
Entergy Balanci	ng Authority Area S	Scheduled Exports/Contract Sales:	
	CELE	Toledo Bend	20 MW
	504	LEPA 1461442 (Mury - LEPA)	12 MW
	SWPA	759196 (Blakley - SPA)	143 MW
	SWPA	1024194 (White Bluff - SPA)	81 MW
	SWPA	1024198 (ISES - SPA)	163 MW
	SWPA	1440189 (White Bluff - SPA)	85 MW
	SWPA	73884558 (PLUM - SPA)	40 MW
	AEPW	759294 (ISES - AEPW)	30 MW
	MIPU	1460876 (Crossroads - MIPU)	75 MW
	MIPU	1460878 (Crossroads - MIPU)	75 MW
	MIPU	1460879 (Crossroads - MIPU)	75 MW
	MIPU	1460881 (Crossroads - MIPU)	75 MW
	EMDE	1340028 (Plum Point - EDE)	50 MW
	EMDE	1340029 (Plum Point - EDE)	50 MW
	AECI	1340019 (Plum Point - AECI)	35 MW
	DERS	DERS - Other Resources	76.1 MW
	DENL	1410022 (Plum Point - DENL)	60 MW
	DENL	1498120 (Plum Point - DENL)	60 MW
	DENL	DENL - Other Resources	85.2 MW
	WESTMEMP	1381404 (ISES - WMUC)	17 MW
	WESTMEMP	1381406 (White Bluff - WMUC)	17 MW
	WESTMEMP	1470484 (Plum Point - WMUC)	20 MW

Entergy Balancing Authority Area Scheduled Imports/Contract Purchases:

CONWAY	1381398 (White Bluff - CNWY)	34 MW
CONWAY	1381400 (ISES - CNWY)	34 MW
CONWAY	1498129 (Plum Point - CNWY)	50 MW
CONWAY	City of Conway - Other Resources	86.4 MW
BUBA	1498122 (Plum Point - BUBA)	30 MW
BUBA	City of Benton - Other Resources	63.5 MW
SMEPA	1139982 Grand Gulf - SMEPA load)	125 MW
SMEPA	1406786 (Plum Point - SMEPA load)	100 MW
SMEPA	1408199 (Plum Point - SMEPA load)	<u>100 MW</u>

Total

1967.2 MW

- 3. Positive interchange indicates an export
- 4. Negative interchange indicates an import

Georgia Transmission Corporation (Included as part of Southern Companies)

Independent Electricity System Operator

ONTARIO BALANCING AUTHORITY ("IESO") AREA INTERCHANGE Area (s) in the case that make up the IESO: 103 EIPC 2020 Summer Future Year Study

IESO Balar	ncing Authority Area Scheduled I	mports/Contract Purchases:
IESO	ITCT	0 MW
Total		0 MW
IESO Balar	ncing Authority Area Scheduled I	Exports/Contract Sales:
IESO	NYISO	0 MW
Total		0 MW
Total Net Ir	iterchange	0 MW

Notes:

1. The small flows observed at these interfaces are not scheduled

ISO New England

ERAG MULTIREGIONAL MODELING WORKING GROUP (ERAG MMWG) INTERCHANGE DATA FOR 2009 SERIES LOAD FLOW BASE CASES

ISO-NE Area 101

REGION	From Area #	From Area Name	To Area #	To Area Name	Comments	Firm	2020SUM
NPCC	101	ISO-NE	102	NYISO	NYPA Hydro Contracts	х	-81.0
NPCC	101	ISO-NE	102	NYISO	Cross Sound HVDC Cable		330.0
NPCC	101	ISO-NE	104	TE	Highgate HVDC		-200.0
NPCC	101	ISO-NE	104	TE	Phase II HVDC		-1500.0
NPCC	101	ISO-NE	105	NB			-600.0
	101	ISO-NE			NET SCHEDULE		-2051.0

LG&E and KU Energy

LG&E/KU BALANCING AUTHORITY ("LGEE") AREA INTERCHANGE Area (s) in the roll-up case that make up the EBA: 363 EIPC 2020 Summer Future Year Study

LG&E/KU Balancing Authority Area Scheduled Imports/Contract Purchases:

SEPA Power	-62 MW
Warren Load on LGEE	-110 MW
BREC Load on LGEE	-11 MW
EKPC Load on LGEE	-562 MW
DEM Load on LGEE	-6 MW
KMPA Load on LGEE	-100 MW
KMPA Load on LGEE	-128 MW
Clifty Creek Surplus	-163 MW
	SEPA Power Warren Load on LGEE BREC Load on LGEE EKPC Load on LGEE DEM Load on LGEE KMPA Load on LGEE KMPA Load on LGEE Clifty Creek Surplus

Total

- 1,142 MW

LG&E/KU Balancing Authority Area Scheduled Exports/Contract Sales:

Total Net I	interchange	-701 MW
Total		441 MW
EKPC	LGEE Load on EKPC	130 MW
AMIL	IMEA Trimble #2	89 MW
AMIL	IMEA Trimble #1	62 MW
AEP	IMPA Trimble #2	94 MW
AEP	IMPA Trimble #1	66 MW

- 1. Positive interchange indicates an export
- 2. Negative interchange indicates an import

MAPPCOR

MID-CONTINENT AREA POWER POOL ("MAPP") AREA INTERCHANGE Area (s) in the case that make up the MAPP: 652, 667, 680 EIPC 2020 Summer Future Year Study

Mid-Continent Area Power Pool (MAPP) Area Scheduled Imports/Contract Purchases:

OTP	Joint Owned Unit BSP II	-99.0
MRES	MRES Gen in OTP BA	-33.0
OTP	BIG STONE GENERATION	-110.0
OTP	COYOTE GENERATION	-40.0
MRES	MRES Gen in ALTW BA	-22.0
MEC	Neal #4	-31.0
MEC	Wisdom #2	-40.0
MRES	MRES Gen in XCEL BA	-18.0
MEC	NEAL 4 GENERATION	-55.0
MEC	WAPA(Harlan)/MEC LOUISA GEN	-6.0
MEAN	HCPD(WAPA)/MEAN WEC2- Intraregional	-61.0
NPPD	GEN (NPPD/WAPA) - Intraregional	-20.0
NPPD	NPPD Loads in NPPD BA (Reduction of WAPA Firm)	-4.0
WPS	75439243 Weston 4	-150.0
WPS	76288610 Weston 4	-14.0

Total

-703 MW

Mid-Continent Area Power Pool (MAPP) Area Scheduled Exports/Contract Sales:

GRE	Supplemental Power	367.0
GRE	WAPA/GRE (CPA) #233493	86.0
GRE	WAPA/GRE (UPA) #233481	3.0
MPC	WAPA/MPC #1603	35.0
ALTW	WAPA/ALTW (CIPCO) #233579	12.0
MEC	Cornbelt	50.0
MEC	50 MW 7x16 -> 5/31/11	0.0
MEC	WAPA/MEC (CBPC) #233581	20.0
MEC	WAPA/MEC (Atlantic) #287697	8.0
MEAN	Redirect from Cooper	0.0
NPPD	Tri-State + Rushmore Co-supply	357.0
NPPD	HCPD(WAPA)/NPPD CNS- Intraregional	0.0

NPPD	WAPA/NPPD (F+P) #234276- Intraregional	436.0
NPPD	WAPA/NPPD (RMR) #345442- Intraregional	4.0
NPPD	WAPA/NPPD (LOUP) #251005- Intraregional	15.0
GRIS	WAPA/NPPD (GRIS) #224204- Intraregional	9.0
NPPD	LOAD (WAPA/NPPD) - Intraregional	86.0
NPPD	LES WAPA Firm Delivery	56.0
NPPD	LES WAPA Firm Peaking Delivery	54.0
OPPD	WAPA/OPPD #363404- Intraregional	82.0
OPPD	WAPA/OPPD Product K Agree- Intraregional	0.0
OPPD	LOAD (WAPA/OPPD) - Intraregional	22.0
LES	Laramie River Station	182.0
SUNF	WAPA/SUNF #286879- Intraregional	7.0
XEL		375.0
MP		250.0
WPS		500.0
XEL		4.0
GRE		172.0

Total

3192 MW

Total Net Interchange

2,489 MW

- 1. Positive interchange indicates an export
- 2. Negative interchange indicates an import

Midwest ISO

MIDWEST ISO BALANCING AUTHORITY ("Midwest ISO") AREA INTERCHANGE Areas in the case that make up the Midwest ISO: 28 EIPC 2020 Summer Future Year Study

Midwest ISO Balancing Authority Area Scheduled Imports/Contract Purchases:

MISO Area	Other Area	Comments	Purchases
ALTE	CE	76672473, PJM 403520.2	-140 MW
ALTW	CE	PJM 340493, 340502, 502025	-264 MW
ALTW	WAPA	WAPA/ALTW (CIPCO) #233579	-12 MW
AMIL	AECI	Mt. Pleasant #1180678	-4 MW
AMIL	EEI	Ameren share EEI CTG's	-70 MW
AMIL	EEI	Ameren CTG's in EEI (3x55 MW)	-165 MW
AMIL	EEI	GF Ameren Share Joppa	-1000 MW
AMIL	LGEE	IMEA-Trimble 1	-62 MW
AMIL	LGEE	IMEA-Trimble 2	-89 MW
AMMO	AECI	City of Rolla, Entitlements	-54 MW
AMMO	ENTERGY	392740 (White Bluff - AMRN)	-160 MW
CIN	NYISO		-7 MW
CWLD	KACY	(Kansas) BPU	-20 MW
CWLD	KAPL	KCPL	-20 MW
CWLD	SWPA	Fulton-Hydro.	-3 MW
CWLD	SWPA	Fulton-Sikston.	-11 MW
CWLD	SWPA	Sikston Only.	-66 MW
DEM	AEP	Buckeye	-73 MW
DEM	AEP	CCD-Conesville	-312 MW
DEM	DAY	Killen	-198 MW
DEM	DAY	Stuart 1-4	-912 MW
DEM	OVEC	Surplus	-180 MW
FE	AEP	CPP/AMPO/Gorsuch	-10 MW
FE	AEP	AMPO-Belleville	-38 MW
FE	AEP	CPP/AMPO/AMPGS (Virtual)	-80 MW
FE	AEP	AMPO-Gorsuch	-132 MW
FE	AEP	Buckeye-OE	-213 MW
FE	AEP	AMPO-Virtual (AMPGS)	-440 MW
FE	NYPP	AMPO-NYPA	-83 MW
FE	OVEC	Surplus	-230 MW
GRE	BEPC	Supplemental Power	-367 MW
GRE	DPC		-172 MW
GRE	WAPA	WAPA/GRE #233481	-3 MW
GRE	WAPA	WAPA/GRE #233493	-86 MW

MISO Area	Other Area	Comments	Purchases
HE	AEP	VIRTUAL	-1000 MW
MEC	BEPC	Basin Allocation to CBPC	-50 MW
MEC	CE	MEC Share of QCNS	-449 MW
MEC	WAPA	WAPA/MEC (Atlantic) #287697	-8 MW
MEC	WAPA	WAPA Allocation to CBPC #233581	-20 MW
METC	AEP	AMPO-Virtual (AMPGS) (CONS)	-152 MW
MGE	CE	72765702 Kendall, PJM 412941.22	-50 MW
MP	MH	Term Sheet	-250 MW
NIPS	AEP	NIPS-Virtual	-200 MW
SIGE	OVEC	Surplus	-30 MW
SIPC	TVA	(SEPA)	-28 MW
WEC	CE	76743102 WPPI	-10 MW
WEC	CE	72850702 WPPI (Kendall)	-25 MW
WEC	CE	72850706 WPPI (Kendall)	-25 MW
WEC	CE	75285088 WPPI	-30 MW
WEC	CE	PJM #276594.6	-90 MW
WPS	MH	76703671 in study status	-500 MW
XEL	DPC	Remote generation	-4 MW
XEL	MH	#76703494	-375 MW
XEL	OPPD	CMMPA purchase from NC2	-3 MW
XEL	OPPD	CMMPA purchase from NC2	-11 <u>M</u> W
		Total Purchases	-8986 MW

Midwest ISO Balancing Authority Area Scheduled Exports/Contract Sales:

MISO Area	Other Area	Comments	Sales
AMIL	AEP	Amp-Ohio	117 MW
AMIL	AP	Amp-Ohio	1 MW
AMIL	CE	Clinton Generation	1045 MW
AMIL	CE	St. Charles-IMEA	90 MW
AMIL	CE	Winnetka	43 MW
AMIL	CE	Rock Falls	25 MW
AMIL	DAY	Amp-Ohio	66 MW
AMIL	LGEE	КМРА	128 MW
DEM	AEP	CCD-Zimmer	330 MW
DEM	AEP	CCD-Beckjord	52 MW
DEM	AEP	WVPA-AKSTEEL	37 MW
DEM	DAY	Zimmer	365 MW
DEM	DAY	Beckjord 6	207 MW
DEM	DAY	East Bend 2	186 MW
DEM	DAY	Miami Fort 7	180 MW
DEM	DAY	Miami Fort 8	180 MW
DEM	LGEE	КМРА	100 MW

MISO Area	Other Area	Comments	Sales
DEM	LGEE	HE-Bridgeport	6 MW
HE	AEP	HE-Drewersburg, HE-Hunstville on AEP	10 MW
HE	AEP	Lynn MP, Winchester MP, Modoc MP	6 MW
MEC	BEPC	Basin Share of Wisdom CT #2	40 MW
MEC	BEPC	NIPCO Share of Neal 4	31 MW
MEC	LES	CB3 to LES	50 MW
MEC	LES	CB4 to LES	50 MW
MEC	NWPS	NWPS Share of Neal 4	55 MW
MEC	WAPA	Harlan (WAPA) Share of Louisa	6 MW
MP	MPC	MPC Share Young 2	227 MW
OTP	MRES	BIG STONE II	99 MW
OTP	NWPS	Big Stone Generation	110 MW
OTP	NWPS	Coyote Generation	40 MW
SIGE	AEP	Cannelton	20 MW
SIGE	DAY	Cannelton	10 MW
WPS	DPC	75439243 Weston 4	150 MW
WPS	DPC	76288610 Weston 4	14 MW
		Total Sales	4076 MW

Total Net Interchange

-4,911 MW

- Positive interchange indicates a sale (export)
 Negative interchange indicates a purchase (import)

Municipal Electric Authority of Georgia (Included as part of Southern Companies)

New Brunswick System Operator

New Brunswick's interchange information is included as part of ISO New England's data sheet.

New York ISO (NYISO)

ERAG MULTIREGIONAL MODELING WORKING GROUP (ERAG MMWG) INTERCHANGE DATA FOR 2009 SERIES LOAD FLOW BASE CASES

REGION	From Area #	From Area Name	To Area #	To Area Name	Comments	Firm	2020SUM
NPCC	102	NYISO	225	PJM	NJ Co-ops	х	17.0
NPCC	102	NYISO	225	PJM	PA Co-ops	х	50.0
NPCC	102	NYISO	225	PJM	Neptune HVDC		-660.0
NPCC	102	NYISO	225	PJM	VFT		-300.0
NPCC	102	NYISO	225	PJM	RECO Supply	х	-545.0
	102	NYISO	225	PJM	Subtotal		-1438.0
NPCC	102	NYISO	226	PENELEC	Net PJM-NYSEG NYSEG al		-750.0
NPCC	102	NYISO	226	PENELEC	PENELEC	х	-36.0
	102	NYISO	226	PENELEC	Subtotal		-786.0
NPCC	102	NYISO	237	RECO	RECO Load	х	545.0
NPCC	102	NYISO	202	FE		х	83.0
NPCC	102	NYISO	205	AEP		х	18.0
NPCC	102	NYISO	208	CIN		х	7.0
NPCC	102	NYISO	209	DPL		х	2.3
NPCC	102	NYISO	101	ISO-NE		х	81.0
NPCC	103	NYISO	102	ISO-NE	Cross Sound Cable		-330.0
NPCC	102	NYISO	104	TE			-1200.0
NPCC	102	NYISO	107	CORNWALL			0.0
	102	NYISO			NET SCHEDULE		-3017.7

NYISO Area 102

PJM Interconnection

From Area	To Area	Interchange	Firm?	Comment
AEP	NYISO	-18.0	Х	AMPO-NYPA
AEP	OVEC	-1229.0	Х	Surplus
AEP	HE	-10.0	х	HE-D&H Load
AEP	HE	-6.0	х	HE-L&W&M Load
AEP	HE	1000.0		Virtual
AEP	DEM	73.0	Х	Buckeye
AEP	DEM	-37.0	Х	WVPA-AKSTEEL
AEP	DEM	312.0	Х	CCD-Conesville
AEP	DEM	-52.0	Х	CCD-Beckjord
AEP	DEM	-330.0	Х	CCD-Zimmer
AEP	DEM	0.0		Virtual
AEP	SIGE	0.0		Virtual
AEP	SIGE	-20.0	Х	Cannelton
AEP	NIPS	200.0		NIPS-Virtual
AEP	METC	152.0		AMPO-Virtual (AMPGS) (CONS)
AEP	EKPC	0.0		Peaking
AEP	CPLE	100.0	Х	NCEMC-1
AEP	CPLE	100.0	Х	NCEMC-2
AEP	AMIL	-117.0	х	AMPO-Prairie State
AEP	LGEE	-66.0	Х	IMPA-Trimble-1
AEP	LGEE	-94.0	х	IMPA-Trimble-2
AEP	AEPW	250.0	Х	Merger
AP	AMIL	-1.0	Х	Amp-Ohio
AP	OVEC	-70.0	х	Surplus
CE	ALTW	65.0	х	PJM#502025
CE	ALTW	149.0	Х	PJM#340502
CE	ALTW	50.0	Х	PJM#340493
CE	AMIL	-90.0		St. Charles
CE	AMIL	-43.0		Winnetka
CE	AMIL	-25.0		Rock Falls
CE	AMIL	-1045.0		Clinton Output
CE	WEC	0.0	Х	PJM #276592.5
CE	WEC	90.0	Х	PJM #276594.6
CE	ALTE	140.0	Х	PJM 403520.2
CE	MGE	50.0	Х	PJM 412941.22
CE	MEC	449.0	x	25% Quad Cities

CE	GRE	0.0	х	PJM 847949
DAY	OVEC	-98.0	х	Surplus
DAY	DEM	-207.0	х	Beckjord 6
DAY	DEM	-180.0	х	Miami Fort 7
DAY	DEM	-180.0	х	Miami Fort 8
DAY	DEM	-186.0	х	East Bend 2
DAY	DEM	-365.0	х	Zimmer
DAY	DEM	912.0	х	Stuart 1-4
DAY	DEM	198.0	х	Killen
DAY	NYPP	-2.3	х	AMPO-NYPA
DAY	AMIL	-66.0	х	Amp-Ohio
DAY	SIPC	0.0	х	AMPO-Smithland (SERC)
DAY	SIGE	-9.5	х	AMPO-Cannelton
DVP	CPLE	-182.0	х	NCEMPA
DVP	CPLE	95.0	х	SEPA-KERR
DVP	CPLE	-10.0	х	Littleton
DVP	DUKE	-100.0	х	NCEMC
FE	OVEC	-230.0	х	Surplus
FE	SIGE	-45.7	х	AMPO-Cannelton
FE	AMIL	-112.1	х	AMPO-Praire State
FE	DEM	0.0	х	AMPO-Barclays
FE	DEM	0.0	х	Integrys Purchase
FE	DEM	0.0	х	AMPO-Barclays
FE	ITC	-296.0	х	Sumpter
FE	NYPP	-83.0	х	AMPO-NYPA
PENELEC	NYISO	750.0		Net MAAC-NYCA
PENELEC	NYISO	36.0	х	NYSEG al PENELEC
PJM	NYISO	-17.0	х	NJ Co-ops
PJM	NYISO	-50.0	х	PA Co-ops
PJM	NYISO	545.0	х	RECO Supply
PJM	NYISO	660.0	х	Neptune
PJM	NYISO	300.0	х	VFT
PJM	CPLE	-47.0	х	(PJM-Cravenwood)
RECO	NYISO	-545.0	х	RECO Load
Total Net Inter	rchange:	411.4		

PowerSouth Energy Cooperative

POWERSOUTH PLANNING AUTHORITY ("PPA") AREA INTERCHANGE Area (s) in the case that make up the PPA: 350 EIPC 2020 Summer Future Year Study

PowerSouth Planning Authority Area Scheduled Imports/Contract Purchases:

SEPA	Sales to PowerSouth	-100 MW
SEPA	Preferred Customers	-99 MW
SEPA	Sales to SMEPA	-68 MW
SOCO	Plant Miller	-114 MW
MEAG	PowerSouth Purchase	-125 MW
SOCO	Purchase from SH LFG	-5 MW
SOCO	Purchase from Yellow Pine	-30 MW
Total		- 541 MW

PowerSouth Planning Authority Area Scheduled Exports/Contract Sales:

SOCO	PowerSouth load on SOCO + Losses	1174 MW
SMEPA	SEPA – PS - SMEPA	68 MW
Total		1242 MW

Total Net Interchange 701 MW

- 1. Positive interchange indicates an export
- 2. Negative interchange indicates an import

Progress Energy Carolinas

Progress Energy Carolinas East (CPLE) Balancing Authority Scheduled Imports/Contract Purchases:

Total		- 1,650 MW
AEP	NCEMC#2	-100 MW
AEP	NCEMC	-100 MW
DVP	SEPA-Kerr	-95 MW
Duke	PEC-Rowan	-150 MW
Duke	NCEMC#2	-100 MW
Duke	NCEMC/CNS	-105 MW
Duke	Broad River	-850 MW
CPLW	Transfer	-150 MW

Progress Energy	Carolinas East (CPLE) Balancing Au	thority Scheduled Exports/Contra	ct Sales:
Duke	NCEMC	150 MW	
Duke	NCEMC/Anson	60 MW	
DVP	NCEMPA	182 MW	
DVP	Littleton	10 MW	
PJM	Cravenwood	47MW	
Total		449 MW	
Total Net Interch CPLE	ange-	-1,201 MW	
Progress Energy	Carolinas West (CPLW) Balancing A	Authority Scheduled Imports/Cont	ract Purchases:
TVA	SEPA	-1 MW	
Total		-1 MW	
<u>Progress Energy</u> CPLE	Carolinas West (CPLW) Balancing A Transfer	Authority Scheduled Exports/Cont 150 MW	ract Sales:
Total		150 MW	
Total Net Interch CPLW	ange-	149 MW	

Notes:

1. Positive interchange indicates an export

2. Negative interchange indicates an import

Progress Energy Florida

Progress Energy Florida (PEF) Balancing Authority Scheduled Imports/Contract Purchases:

Total			2 000 1/11/
FRCC	PEF	Firm (Intra-FRCC)	-3464 MW
Southern	PEF	Firm	-424 MW

Progress Energy Florida (PEF) Balancing Authority Scheduled Exports/Contract Sales:

Total

0 MW

Total Net Interchange-PEF -3,888 MW

- 1. Positive interchange indicates an export
- 2. Negative interchange indicates an import

Santee Cooper

SOUTH CAROLINA PUBLIC SERVICE AUTHORITY DETAILED INTERCHANGE EIPC 2020 Summer Future Year Study

SCPSA Scheduled Imports/Contract Purchases:

Total		- 1,645 MW
SEPA	Thurmond	-63 MW
SEPA	Russell	-212 MW
SCE&G	VC Summer	-1,370 MW

SCPSA Scheduled Exports/Contract Sales:

SCE&G SCE&G	Charleston Navy Woodland Hills	15 MW 16 MW
SCE&G	NHEC	19 MW
Total		50 MW

Total Net Interchange

-1,595 MW

- 1. Positive interchange indicates an export
- 2. Negative interchange indicates an import

South Carolina Electric & Gas

SCE&G BALANCING AUTHORITY ("SCE&G") AREA INTERCHANGE Area(s) in the case that make up SCE&G: 343 EIPC 2020 Summer Future Year Study

SCE&G Balancing Authority Area Scheduled Imports/Contract Purchases:

Fotal		- 72 MW
SCPSA	NHEC Load on SCE&G	-19 MW
SCPSA	Woodland Hills Load on SCE&G	-16 MW
SCPSA	Charleston Navy	-15 MW
SEPA	Thurmond Dam	-22 MW

SCE&G Balancing Authority Area Scheduled Exports/Contract Sales:

SCPSA	VC Summer #1, #2, #3	1370 MW
Total		1,370 MW
Total Net Interch	ange	1,298 MW

- 1. Positive interchange indicates an export
- 2. Negative interchange indicates an import

Southern Company

SOUTHERN BALANCING AUTHORITY ("SBA") AREA INTERCHANGE Area (s) in the case that make up the SBA: 346 EIPC 2020 Summer Future Year Study

Southern Balancing Authority Area Scheduled Imports/Contract Purchases:

Total		- 2,200 MW
SMEPA	SMEPA Load on Southern	-158 MW
PowerSouth	PowerSouth Load on Southern	-1174 MW
TVA	TVA Load on Southern	-187 MW
SEPA	Thurmond Dam	-143 MW
SEPA	Russell Dam	-258 MW
SEPA	Hartwell Dam	-280 MW

Total

Southern Balancing Authority Area Scheduled Exports/Contract Sales:

Duke	City of Seneca	31 MW
TVA	Southern Load on TVA	139 MW
PowerSouth	SEPA Sales to PowerSouth	100 MW
PowerSouth	SEPA Sales to SMEPA via PowerSouth	68 MW
PowerSouth	SEPA Preferred Customers	99 MW
PowerSouth	Plant Miller Ownership	114 MW
PowerSouth	PowerSouth Purchase from SH LFG	5 MW
PowerSouth	PowerSouth Purchase from MEAG	125 MW
PowerSouth	PowerSouth Purchase from GTC	30 MW
SMEPA	SMEPA Purchase	152 MW
FPL	Sum of Point to Point Transactions	930 MW
FPL	Scherer #4 Ownership	649 MW
FPL	GTC to FPL	13 MW
FPC	Sum of Point to Point Transactions	424 MW
JEA	Sum of Point to Point Transactions	206 MW
JEA	Scherer #4 Ownership	201 MW

Total

3,286 MW

Total Net Interchange

1,086 MW

- 2. Positive interchange indicates an export
- 3. Negative interchange indicates an import

Southwest Power Pool

ERAG MULTIREGIONAL MODELING WORKING GROUP (ERAG MMWG) INTERCHANGE DATA FOR 2009 SERIES LOAD FLOW BASE CASES

SPP Area 500 - 599

REGION	From Area #	From Area Name	To Area #	To Area Name	Comments	Firm	TRID	2020SUM
SPP	502	CELE	503	LAFA	50% JOU #263191, 263187;SPP,CLEC,2631 91,6MW;SPP,SWPA,181 561,6MW;SPP,CLEC,263 187,246MW	Х		246.0
SPP	502	CELE	503	LAFA	50% JOU #263191, 263187;SPP,CLEC,2631 91,6MW;SPP,SWPA,181 561,6MW;SPP,CLEC,263 187,246MW	Х		6.0
SPP	502	CELE	503	LAFA	SPP,CLEC,72616388,10	Х		100.0
					Subtotal			352.0
SPP	502	CELE	504	LEPA	20% JOU #245446;SPP,CLEC,245 446 67MW	Х		105.0
SPP	502	CELE	504	LEPA	ALEX #245446;SPP,CLEC,245 446.67MW	Х		-56.0
SPP	502	CELE	504	LEPA	ALEX #224152;SPP,CLEC,224 152.6MW:SPP.SWPA.?.?	Х		0.0
					Subtotal			49.0
SPP	502	CELE	332	LAGN	2007 RFP BC2; J1062;EES,CLEC,70865	Х		0.0
SPP	502	CELE	332	LAGN	2007 RFP BC2;EES,CLEC,7087588 5,100MW			0.0
SPP	502	CELE	351	EES	Toledo Bend;	Х		-20.0
SPP	502	CELE	351	EES	2007 RFP SRW Cogen;EES,CLEC,70865 593.50MW	Х		0.0
SPP	502	CELE	351	EES	Richard losses;	Х		1.0
SPP	502	CELE	351	EES	· ,	Х		0.0
SPP	502	CELE	351	EES	CLELCO load;	Х		0.0

					Subtotal		-19.0
SPP	502	CELE	520	AEPW	50% JOU #68009;SPP,CLEC,6800 9,325MW;SPP,CSWS,78	Х	005.0
SPP	502	CELE	520	AEPW	779,325MW MARTIN ;SPP,CSWS,334542,10M W	Х	325.0 0.0
SPP	502	CELE	520	AEPW	ACADIA #380718, 380717;SPP,CLEC,3807 17,153MW;SPP,CLEC,38 0718,102MW	Х	0.0
					Subtotal		325.0
	502	CELE			NET SCHEDULE		707.0
SPP	503	LAFA	502	CELE	JOU;SPP,CLEC,263191, 6MW;SPP,SWPA,181561 ,6MW;SPP,CLEC,263187 246MW	Х	-246.0
SPP	503	LAFA	502	CELE	JOU;SPP,CLEC,263191, 6MW;SPP,SWPA,181561 ,6MW;SPP,CLEC,263187 246MW	Х	-6.0
SPP	503	LAFA	502	CELE	72616388	х	-100.0
SPP	503	LAFA	504	LEPA	;SPP,CLEC,263191,6MW ;SPP,SWPA,181561,6M W;SPP,CLEC,263187,24 6MW	Х	0.0
SPP	503	LAFA	515	SWPA	;SPP,SPA,322102,19MW ;SPP,SPA,336921,19MW ;SPP,SPA,323653,6MW	Х	-18.0
	503	LAFA			NET SCHEDULE		-370.0
SPP	504	LEPA	503	LAFA	50% JOU #263191, 263187;SPP,CLEC,2631 91,6MW;SPP,SWPA,181 561,6MW;SPP,CLEC,263 187,246MW	Х	0.0
SPP	504	LEPA	502	CELE	20% JOU #245446;SPP,CLEC,245 446 67MW	Х	-105.0
SPP	504	LEPA	502	CELE	ALEX #245446;SPP,CLEC,245	Х	56.0
SPP	504	LEPA	502	CELE	440,071999 ALEX #224152;SPP,CLEC,224 152,6MW;SPP,SWPA,?,?	х	0.0

	504	LEPA	502	CELE	Subtotal		-49.0
SPP SPP SPP	504 504 504	LEPA LEPA LEPA	332 351 515	LAGN EES SWPA	; ; ; Subtotal	X X X	3.0 -12.0 -6.0 -15.0
SPP	504	LEPA			NET SCHEDULE		-64.0
SPP SPP	515 515	SWPA SWPA	330 330	AECI AECI	; ; Subtotal	X X	538.0 -13.0 525.0
SPP	515	SWPA	351	EES	(SWPA load - Augasta);SPP,SPA,2257	Х	3.0
SPP	515	SWPA	351	EES	(SWPA load - Thayer in EN);SPP,SPA,125522,3	Х	4.0
SPP	515	SWPA	351	EES	(SWPA load - Hydro	Х	100.0
SPP	515	SWPA	351	EES	(OASIS# 966987, Jonesboro load served from ISES, ends 1/2003);EES,EES,10241 98,168MW;SPP,SPA,119	Х	-163.0
SPP	515	SWPA	351	EES	(OASIS# 966982, Jonesboro load served from Whitebluff, ends 1/2003);EES,EES,10241 94,83MW;SPP,SPA,1192	Х	-81.0
SPP	515	SWPA	351	EES	Plum Point;(OASIS# 137528, Highland(Ash Flat) load, ends 1/2006)	Х	0.0
SPP	515	SWPA	351	EES	(OASIS# 759196, Blakeley, ends 1/2021);SPP,SPA,11837 2 143MW	Х	-75.0
SPP	515	SWPA	351	EES	(OASIS# 759196, DeGray, ends 1/2021);SPP,SPA,11837 2 143MW	Х	-68.0
SPP	515	SWPA	351	EES	(EN load - Norfork, Glencoe & Buford in SWPA);SPP,SPA,108985 ,98MW;SPP,SPA,225769	Х	-85.0
SPP	515	SWPA	351	EES	73884558 Plum - SPA		-40.0

					Subtotal		-405.0
SPP	515	SWPA	333	CWLD	Sikston Only. Path is through Amren.;SPP,SPA,119231	х	66.0
SPP	515	SWPA	333	CWLD	Fulton-Hydro. Path is through Associated;SPP,SPA,119 231 125MW/	Х	3.0
SPP	515	SWPA	333	CWLD	Fulton-Sikston. Path is through Amren.;SPP,SPA,119231 125MW	Х	11.0
	515	SWPA	333	CWLD	Subtotal		80.0
SPP	515	SWPA	356	AMRN	UE (80);SPP,SPA,119231,12 5MW	Х	0.0
SPP	515	SWPA	503	LAFA	Path is through AEPW & CELE;SPP,SPA,119231, 125MW	Х	18.0
SPP	515	SWPA	504	LEPA	Path is through Entergy;SPP,SPA,32210 2,19MW;SPP,SPA,33692 1.19MW	Х	6.0
SPP	515	SWPA	332	LAGN	Path is through Entergy;SPP,SPA,23304 7.91MW	Х	83.0
SPP	515	SWPA	338	DERS	New area;	Х	5.0
SPP	515	SWPA	520	AEPW	;SPP,CSWS,324174,102 MW;SPP,SPA,110862,10 2MW;SPP,CSWS,79036, 40MW;SPP,SPA,110832, 39MW;SPP,CSWS,79158 ,23MW;SPP,SPA,110834 ,2MW;SPP,SPA,110853, 18MW;SPP,SPA,110860, 2MW;SPP,SPA,110844,1 MW;SPP,CSWS,?,?;SPP	X	253.0
SPP	515	SWPA	523	GRRD	,SPA, 110839,89MW ;SPP,GRDA,181246,45M W;SPP,SPA,121295,45M W;SPP,GRDA,181248,60 MW;SPP,SPA,115841,60	Х	-97.0
SPP	515	SWPA	524	OKGE	;SPP,OKGE,460742,32M W;SPP,SPA,110830,32M W	х	18.0
SPP	515	SWPA	525	WFEC	;SPP,SPA,110823,260M W;SPP,WFEC,168948,26	Х	260.0

					OMW		
SPP	515	SWPA	525	WFEC	Anthony Peaking & supplemental;SPP,SPA,6 31417.1MW	Х	-8.0
SPP	515	SWPA	525	WFEC	;SPP,SPA,110825,19MW	Х	0.0
SPP	515	SWPA	525	WFEC	;SPP,WFEC,168950,11M W ??	Х	-5.0
					Subtotal		247.0
SPP	515	SWPA	527	OMPA	Path is through AEPW & OKGE;SPP,SPA,314301, 78MW	Х	111.0
SPP	515	SWPA	536	WERE	Kaw Valley REA;SPP,SWPP,467767, 1MW;SPP,SWPP,467770 .1MW	х	1.0
SPP	515	SWPA	536	WERE	Nemaha- Marshall;SPP.SPA,34538 4.1MW	Х	1.0
SPP	515	SWPA	536	WERE	KEPCO's load in WERE, 5MW redirect after June '05;SPP,SPA,110870,100 MW,SPP,EDE,545588,10 0MW;SPP,EMDE	Х	100.0
SPP	515	SWPA	536	WERE	KMEA - Chanute;SPP,SPA,12551 4.9MW	Х	2.0
SPP	515	SWPA	536	WERE	KMEA - Iola;SPP,SPA,125515,2M W	Х	2.0
SPP	515	SWPA	536	WERE	KMEA - Mulvane;SPP,SPA,12551 4 9MW	Х	1.0
SPP	515	SWPA	536	WERE	KMEA - Neodesha;SPP,SPA,125 514 9MW	Х	1.0
SPP	515	SWPA	536	WERE	KMEA - Wellington;SPP,SPA,125	Х	3.0
SPP	515	SWPA	536	WERE	KMEA - Winfield;SPP,SPA,12551 4 9MW	Х	2.0
SPP	515	SWPA	536	WERE	KMEA - Winfield;SPP,SPA,12551 4.9MW	Х	7.0
					Subtotal		120.0
SPP	515	SWPA	539	WEPL	•	Х	0.0
SPP	515	SWPA	541	KACP	;SPP,SWPP,345018,3M W	Х	5.0
SPP	515	SWPA	542	KACY	Hydro to EDE to KCPL to		38.0

KACY;SPP,KCPL,70817, 39MW

SPP	515	SWPA	546	SPRM	PEAKING;SPP,SPA,1183 16,55MW;SPP,SPA,1183 64,125MW/	Х	50.0
SPP	515	SWPA	546	SPRM	NIXA;SPP,SPA,118363,7 0MW ??	Х	-78.0
					Subtotal		-28.0
	515	SWPA			NET SCHEDULE		979.0
SPP	520	AEPW	330	AECI	KAMO;SPP,GRDA,46967 4.105MW ?	Х	-55.0
SPP	520	AEPW	205	AEPE	;	Х	-250.0
SPP	520	AEPW	332	LAGN	;SPP,CSWS,79037,100M W	Х	-100.0
SPP	520	AEPW	337	PUPP	;SPP,CSWS,79037,100M W	Х	0.0
SPP	520	AEPW	502	CELE	50% JOU #68009;SPP,CLEC,6800 9,325MW;SPP,CSWS,78 779 325MW	Х	-325.0
SPP	520	AEPW	502	CELE	MARTIN ;SPP,CSWS,334542,10M W	Х	0.0
SPP	520	AEPW	502	CELE	ACADIA #380718, 380717;SPP,CLEC,3807 17,153MW;SPP,CLEC,38 0718,102MW	Х	0.0
					Subtotal		-325.0
SPP	520	AEPW	351	EES	AEPW Load on EES;	Х	5.0
SPP	520	AEPW	351	EES	ETEC Load 1;	Х	-30.0
SPP	520	AEPW	351	EES	ETEC Load 2;	Х	50.0
SPP	520	AEPW	351	EES	AECC Schedule;	Х	0.0
SPP	520	AEPW	351	EES	ISES:	х	0.0
SPP	520	AEPW	351	EES	EPI Resources;	х	0.0
SPP	520	AEPW	351	EES	City of Prescott:	х	0.0
					Subtotal		25.0
SPP	520	AEPW	998	ERCOT (North)	;SPP,CSWS,343411,80M W;SPP,CSWS,513653,10 8MW;SPP,CSWS,513659 32MW	Х	-220.0
SPP	520	AEPW	998	ERCOT (East)	;SPP,CSWS,343411,80M W;SPP,CSWS,513653,10 8MW;SPP,CSWS,513659 ,32MW	Х	50.0

SPP	520	AEPW	998	ERCOT (East)	OMPA portion of New north tie;SPP,CSWS,343411,8 0MW;SPP,CSWS,513653 ,108MW;SPP,CSWS,513	Х	0.0
SPP	520	AEPW	524	OKGE	;SPP,CSWS,272408,10M W	Х	0.0
SPP	520	AEPW	524	OKGE	;		0.0
SPP	520	AEPW	527	OMPA	;SPP,CSWS,343413,16M W; CSWS,343415,25MW ??	Х	158.0
SPP	520	AEPW	515	SWPA	;SPP,CSWS,324174,102 MW;SPP,SPA,110862,10 2MW;SPP,CSWS,79036, 40MW;SPP,SPA,110832, 39MW;SPP,CSWS,79158 ,23MW;SPP,SPA,110834 ,2MW;SPP,SPA,110853, 18MW;SPP,SPA,110860, 2MW;SPP,SPA,110844,1 MW;SPP,CSWS,?,?;SPP ,SPA,110839,89MW	Х	-253.0
SPP	520	AEPW	525	WFEC	;SPP,WFEC,168954,50M W	Х	-56.0
SPP	520	AEPW	526	SPS	;SPP,SPS,631456,7MW;	Х	-9.0
SPP	520	AEPW	526	SPS	;SPP,CSWS,974790,50M W;SPP,CSWS,974791,50 MW;SPP,CSWS,974793, 50MW;SPP,CSWS,97479 7,50MW	Х	0.0
	520	AEPW			NET SCHEDULE		-1035.0
SPP	523	GRRD	515	SWPA	;SPP,GRDA,181246,45M W;SPP,SPA,121295,45M W;SPP,GRDA,181248,60 MW;SPP,SPA,115841,60 MW		97.0
SPP	523	GRRD	524	OKGE	Redbud Generation;		-300.0
SPP	523	GRRD	525	WFEC		Х	100.0
SPP	523	GRRD	527	OMPA	;SPP,OKGE,460343,25M W		75.0
SPP	523	GRRD	536	WERE	MIDW - GRDA;		5.0
SPP	523	GRRD	536	WERE	KMEA T1;SPP,SWPP,560383,5 MW		3.0
SPP	523	GRRD	536	WERE	KMEA T2;SPP,SWPP,560385,2 0MW		20.0
SPP	523	GRRD	541	KACP	KMEA;SPP,SWPP,16395		15.0

					8,15MW		
SPP	523	GRRD	546	SPRM	;		0.0
SPP	523	GRRD	330	AECI	KAMO;SPP,GRDA,42440 6,198MW		182.0
SPP	523	GRRD	330	AECI	Rolla;		0.0
	523	GRRD			NET SCHEDULE		197.0
SPP	524	OKGE	515	SWPA	;SPP,OKGE,460742,32M W;SPP,SPA,110830,32M W	Х	-18.0
SPP	524	OKGE	520	AEPW	PSOK;SPP,CSWS,27240 8 10MW	Х	0.0
SPP	524	OKGE	520	AEPW	;		0.0
SPP	524	OKGE	523	GRRD	Redbud Generation;		300.0
SPP	524	OKGE	525	WFEC	;SPP,WFEC,LOAD	Х	-12.0
SPP	524	OKGE	351	EES	MDEA;	Х	0.0
SPP	524	OKGE	351	EES	MDEA;	Х	0.0
SPP	524	OKGE	536	WERE	Spring Creek;	Х	225.0
SPP	524	OKGE	527	OMPA	;	Х	283.0
	524	OKGE			NET SCHEDULE		778.0
SPP	525	WFEC	515	SWPA	PURCHASE;SPP,SPA,11 0823,260MW;SPP,WFEC 168948 260MW	Х	-260.0
SPP	525	WFEC	515	SWPA	LOAD;SPP,WFEC,16895	Х	8.0
SPP	525	WFEC	515	SWPA	;SPP,SPA,110825,19MW	Х	0.0
SPP	525	WFEC	515	SWPA	;SPP,WFEC,168950,11M W 22	Х	5.0
SPP	525	WFEC	520	AEPW	;SPP,WFEC,168954,50M W	Х	56.0
SPP	525	WFEC	523	GRRD		Х	-100.0
SPP	525	WFEC	524	OKGE	SPP,WFEC,168954,50M W	Х	12.0
					Subtotal		-279.0
	525	WFEC			NET SCHEDULE		-279.0
SPP	526	SPS	999	WECC	SPS,SWPP,750447,50M W;;SPS,SWPP,750448,1 7MW;;SPS,SWPP,75045 3,30MW;;SPS,SWPP,750 458,50MW;;SPS,SWPP,7 50450,18MW/	Х	0.0
SPP	526	SPS	999	WECC	SPS,SWPP,320900,50M	Х	0.0
SPP	526	SPS	999	WECC	SPS,LAMAR,1256070,21 0MW	Х	0.0

SPP	526	SPS	999	WECC	SPS,LAMAR,1256074,21	Х	-105.0
SPP	526	SPS	999	WECC	SPS,LAMAR,#1089911,2	Х	2.0
					Subtotal		-103.0
SPP	526	SPS	520	AEPW	LOAD;SPS(GS),AEPW,6 31456,7MW;;SPS(GS),A EPW.631457.6MW	х	9.0
SPP	526	SPS	520	AEPW	;SPS,AEPW,974790,50M W;;SPS,AEPW,9747941, 50MW;;SPS,AEPW,9747 93,50MW;;SPS,AEPW,97 4797,50MW	Х	0.0
	526	SPS			NET SCHEDULE		-94.0
SPP	527	OMPA	515	SWPA	;SPP,SPA,314301,78 MW/	Х	-111.0
SPP	527	OMPA	520	AEPW	;SPP,CSWS,343413,16M W;SPP,CSWS,343415,25 MW 22	Х	-158.0
SPP	527	OMPA	523	GRRD	;SPP,OKGE,460343,25M W	Х	-75.0
SPP	527	OMPA	524	OKGE	;SPP,OKGE,442716,56M W;SPP,OKGE,442717,10 0MW;SPP,OKGE,442720 56MW	Х	-283.0
SPP	527	OMPA	536	WERE	;SPP,OKGE,460354,51M W	Х	0.0
	527	OMPA			NET SCHEDULE		-627.0
SPP	531	MIDW	536	WERE	KPL - P;SPP,WERE,393997,12 5MW	х	-135.0
SPP	531	MIDW	536	WERE	KGE - PPA;SPP,WERE,272409,	х	0.0
SPP	531	MIDW	536	WERE	61MW KPL - WP;SPP,WERE,575926, 40MW	Х	0.0
SPP	531	MIDW	536	WERE	KGE - WPPA;SPP,WERE,5759 27.30MW	Х	0.0
SPP	531	MIDW	536	WERE	Peaking;	Х	0.0
SPP	531	MIDW	536	WERE	SYSTEM Participation;	Х	-120.0
SPP	531	MIDW	536	WERE	KEPCo Load in MIDW;	Х	-3.0
					Subtotal		-258.0

SPP	531	MIDW	534	SUNC	DELIVERY - WAPA to MIDW;SPP,MIDW,25652	Х	-2.0
SPP	531	MIDW	534	SUNC	DELIVERY - SUNC- Holcomb		0.0
SPP	531	MIDW	534	SUNC	SH Wind to SUNC; Subtotal		6.0 4.0
SPP	531	MIDW	523	GRDA	,	Х	-5.0
SPP	531	MIDW	541	KCPL	. ,	Х	0.0
SPP	531	MIDW	542	KACY	SH Wind to BPU;	Х	3.0
	531	MIDW			NET SCHEDULE		-256.0
SPP	534	SUNC	531	MIDW	DELIVERY;SPP,MIDW,2 56528.25MW ??	Х	2.0
SPP	534	SUNC	531	MIDW	PURCHASE;	no	0.0
SPP	534	SUNC	531	MIDW	SH Wind to SUNC;		-6.0
					Subtotal		-4.0
	534	SUNC	536	WERE	Central Plains	х	11.0
					Subtotal		11.0
SPP	534	SUNC	539	WERE	HOLCOMB UNIT PARTICIPATION;SPP,W	Х	0.0
SPP	534	SUNC	539	WERE	SECI to MKEC or MKEC	х	215.0
SPP	534	SUNC	539	WERE		Х	0.0
SPP	534	SUNC	539	WERE	KEPCO;SPP,WEPL,5155 39,34MW ??	Х	0.0
					Subtotal		215.0
SPP	534	SUNC	640	NPPD	DELIVERY;	х	-37.0
					Subtotal		-37.0
SPP	534	SUNC	652	WAPA	;	Х	-7.0
					Subtotal		-7.0
	534	SUNC			NET SCHEDULE		178.0
SPP	536	WERE	515	SWPA	Kaw Valley REA;SPP-	х	-1.0
SPP	536	WERE	515	SWPA	Nemaha Marshal	х	-1.0
SPP	536	WERE	515	SWPA	KEA, SPP-SWPP 503917 KEPCO's load in WERE, 5MW redirect after June '05;SPP-SWPP 895074	Х	-100.0

SPP	536	WERE	515	SWPA	Chanute (KEMA/WRGS);SPP- SWPP 467755	Х	-2.0
SPP	536	WERE	515	SWPA	lola (KMEA/WRGS);SPP- SWPP 883781	Х	-2.0
SPP	536	WERE	515	SWPA	Mulvane (KMEA/WRGS);SPP- SWPP 881847	Х	-1.0
SPP	536	WERE	515	SWPA	Neodesha (KMEA/KPP);SPP-SWPP 467770	Х	-1.0
SPP	536	WERE	515	SWPA	Wellington (KMEA/KPP);SPP-SWPP 467773	х	-3.0
SPP	536	WERE	515	SWPA	Winfield (KMEA/KPP);SPP-SWPP 467777	Х	-2.0
SPP	536	WERE	515	SWPA	Winfield (KMEA/KPP);SPP-SWPP 467777	Х	-7.0
					Subtotal		-120.0
SPP	536	WERE	330	AECI	AECI-KGE- KPL;SPP,SWPP,432676, 60MW;SPP,SWPP,43414 0,20MW;SPP,SWPP,434 147,20MW	Х	-40.0
SPP	536	WERE	523	GRRD	City of Girard;1055293	Х	-3.0
SPP	536	WERE	523	GRRD	KMEA T2;SPP,SWPP,560385,2 0MW	Х	-20.0
SPP	536	WERE	527	OMPA	;SPP,OKGE,460354,51M W	Х	0.0
SPP	536	WERE	524	OKGE	JO:OneOK Spring Creek;partial ownership of OneOK	Х	-225.0
	536	WERE	534	SUNC	Central Plains		-11.0
SPP	536	WERE	531	MIDW	KPL - P;SPP,WERE,393997,12 5MW	Х	135.0
SPP	536	WERE	531	MIDW	KGE - PPA;SPP,WERE,272409, 61MW	х	0.0
SPP	536	WERE	531	MIDW	KPL - WP;SPP,WERE,575926, 40MW		0.0
SPP	536	WERE	531	MIDW	KGE - WPPA;SPP,WERE,5759 27.30MW		0.0
SPP	536	WERE	531	MIDW	WESTAR OTHER;SPP,WERE,575 564,17		0.0

SPP SPP	536 536	WERE WERE	531 531	MIDW MIDW	SYSTEM Participation; KEPCo Load in MIDW; Subtotal		120.0 3.0 258.0
SPP	536	WERE	539	WEPL	KPL-JEC Co-owner power minus losses based on 100% of co- owner share of output.;SPP,WERE,7510 0,90MW;SPP,WERE,179 934,14MW;SPP,WERE,5 77935 5MW 22	Х	0.0
SPP	536	WERE	539	WEPL	KPL-WAPA power for	Х	-2.0
SPP	536	WERE	539	WEPL	WERE to KEPCo Aquila- N		5.0
	536 536	WERE WERE	539 539	WEPL WEPL	Mad;SPP,WERE,WEPL,4 OMW Flat Ridge Meridian Way Subtotal		-11.0 -11.0 -19.0
SPP	536	WERE	540	MIPU	KPL-JEC Co-owner power minus losses based on 100% of co- owner share of output.;SPP,WERE,7509 9,90MW	Х	166.0
SPP	536	WERE	541	KACP	KPL load at Spring Hill;	Х	0.0
SPP	536	WERE	541	KACP	KGE-Wolf Ck. Co-owner power. Unit refueling in April 2002	Х	566.0
SPP	536	WERE	541	KACP	KGE-La Cygne Unit 1 Co-	Х	-372.0
SPP	536	WERE	541	KACP	KGE-La Cygne Unit 2 Co-	Х	-330.0
SPP	536	WERE	541	KACP	WERE load at Ridgeview;	х	0.0
SPP	536	WERE	541	KACP	KCPL's Augusta in WERE;IATAN	Х	-30.0
					Subtotal		-166.0
SPP	536	WERE	542	KACY	Fredonia (KMEA/WRGS from Nearman);SPP- SWPP 883783	Х	-3.0
SPP	536	WERE	542	KACY	Mulvane (KMEA/WRGS from Nearman);SPP- SWPP 883647	Х	-3.0
SPP	536	WERE	542	KACY	Neodesha (KMEA/KPP from Nearman);SPP- SWPP385632	Х	-4.0

SPP	536	WERE	542	KACY	Winfield (KMEA/KPP from Nearman);SPP- SWPP 409265 Subtotal	Х	-13.0
					Oublotal		20.0
SPP	536	WERE	544	EMDE	JEC Partcipation;SPP,SWPP, 344550,162MW;SPP,WE RE,75098,162MW;SPP, WP 381430,165MW	х	0.0
SPP	536	WERE	544	EMDE	State Line;SPP,SWPP,126958, 200MW	Х	-200.0
					Subtotal		-200.0
	536	WERE			NET SCHEDULE		-403.0
SPP	539	MKEC	515	SWPA	KEPCO AND KMEA WAPA POWER; SWPA- EMDE-WERE-WEPL;	х	0.0
SPP	539	MKEC	534	SUNC	HOLCOMB UNIT PARTICIPATION;SPP,W EPL.533671.38MW ??	х	0.0
SPP	539	MKEC	534	SUNC	CITY OF SUBLETTE;	Х	-215.0
SPP	539	MKEC	534	SUNC	TURBINES;	Х	0.0
SPP	539	MKEC	534	SUNC	KEPCO;SPP,WEPL,5155 39.34MW ??	Х	0.0
					Subtotal		-215.0
SPP	539	MKEC	536	WERE	OWNERSHIP SHARE OF JEFFREY ENERGY CENTER;SPP,WERE,75 100,90MW;SPP,WERE,1 79934,14MW;SPP,WERE ,577935,5MW ??	х	0.0
SPP	539	MKEC	536	WERE	CITY OF LINDSBORG;	Х	2.0
SPP	539	MKEC	536	WERE	WR(Wolf Ck)- WEPL(KEPCo);SPP,WE RF 2 40MW	Х	-5.0
	539	MKEC	536	WERE	Meridian Way	Х	11.0
	539	MKEC	536	WERE	Flat Ridge	Х	11.0
					Subtotal		19.0
SPP	539	MKEC	540	MIPU	SJLP(GCWE);	Х	0.0
SPP	539	MKEC	540	MIPU	MIPU (GCWE); Subtotal	Х	0.0 0.0

SPP	539	MKEC	541	KACP	GPE WIND;	Х	38.0
	539	MKEC	544	EMDE	Meridian Way	Х	31.0
	500						407.0
	539	MKEC			NET SCHEDULE		-127.0
SPP	540	MIPU	536	WERE	OWNERSHIP SHARE OF JEFFREY ENERGY CENTER;SPP,WERE,75 099,90MW	х	-166.0
SPP	540	MIPU	541	KACP	KCPL LOAD AT DUNCAN ROAD	Х	0.0
SPP		MIPU-			IATAN 1;SPP,KCPL,445606,200		-127.0
	540	STJO	541	KACP	MW ??		
SPP	540	MIPU	541	KACP	IATAN 2;		-153.0
SPP	540	MIPU	541	KACP	NW;		-150.0
					Subtotal		-430.0
SPP	540	MIPU-	640	NPPD	;	x	0.0
SPP	040	MIPU-	040		,	х	0.0
000	540	STJO	640	NPPD		N/	
SPP	540	MIPU	542	KACY	;SPP,KACY,479115,5MW ;SPP,KACY,485219,5MW ;SPP,KACY,557498,5	Х	0.0
SPP	540	MIPU	539	WEPL	MIPU SUNC CAPACITY	Х	0.0
SPP	540	MIPU	539	WEPL	OWNERSHIP SHARE OF GCWE:	Х	0.0
					Subtotal		0.0
SPP	540	MIPU	351	AMRN	ODESSA/HARRISONVIL	Х	0.0
SPP	540	MIPU	351	AECI	ODESSA/HARRISONVIL LE:	Х	0.0
SPP	540	MIPU	351	AECI	EES-AECI-MIPU;		0.0
SPP	540	MIPU	351	EES	ODESSA/HARRISONVIL LE;EES1286978,128697 9,1286981,1286982,1286	Х	-75.0
	540	MIPU	351	EES	983 ODESSA/HARRISONVIL LE;EES1286978,128697 9,1286981,1286982,1286 983	Х	-75.0
SPP	540	MIPU	351	EES	ODESSA/HARRISONVIL LE;EES1286978,128697 9,1286981,1286982,1286 983	Х	-75.0

	540	MIPU	351	EES	ODESSA/HARRISONVIL LE;EES1286978,128697 9,1286981,1286982,1286 983	Х	-75.0
	540	MIPU			NET SCHEDULE		-896.0
SPP	541	KACP	330	AECI	;SPP,KCPL,70734,150M W	Х	0.0
SPP	541	KACP	333	CWLD	;KACP	Х	20.0
SPP	541	KACP	515	SWPA	T/S;SPP,SWPP,345018,3 MW	Х	-5.0
SPP	541	KACP	523	GRRD	KMEA;SPP,SWPP,16395 8,15MW	Х	-15.0
SPP	541	KACP	531	MIDW	;	Х	0.0
SPP	541	KACP	536	WERE	KPL load at Spring Hill;	Х	0.0
SPP	541	KACP	536	WERE	KGE-Wolf Ck. Co-owner power. Unit refueling in April 2002.;	Х	-566.0
SPP	541	KACP	536	WERE	KGE-La Cygne Unit 1 Co- owner power.;	Х	372.0
SPP	541	KACP	536	WERE	KGE-La Cygne Unit 2 Co- owner power.;	Х	330.0
SPP	541	KACP	536	WERE	WERE load at Ridgeview;	Х	0.0
SPP	541	KACP	536	WERE	IATAN 2 - 30MW TO KEPCO (was formerly KCPL's Augusta in WERE);	Х	30.0
					Subtotal		166.0
SPP	541	KACP	539	WEPL	GPEWIND;	Х	-38.0
					Subtotal		-38.0
SPP	541	KACP	540	MIPU	KCPL LOAD AT	Х	0.0
SPP	541	KACP	540	MIPU	IATAN 1;SPP,KCPL,445606,200 MW ??	Х	127.0
SPP	541	KACP	540	MIPU	IATAN 2;	Х	153.0
SPP	541	KACP	540	MIPU	NW;	Х	150.0
					Subtotal		430.0
SPP	541	KACP	542	KACY	Participation power sales to Kansans Municipal Energy Agency Nearman participation cities.;SPP,KCPL,70773, 3MW;SPP,KCPL,70774,2 MW;SPP,KCPL,70775,3	Х	-15.0

MW:SPP.KCPL.70776.10 MW Subtotal -15.0 SPP 541 KACP 544 EMDE IATAN Х 85.0 1;SPP,KCPL,1603,80MW ;SPP,EDE,526697,80MW SPP 541 KACP 544 EMDE IATAN 2; Х 102.0 Subtotal 187.0 SPP 541 KACP 545 INDN CAPACITY;SPP,KCPL,1 Х 0.0 10144,90MW SPP 541 KACP 545 INDN IATAN 2; Х 50.0 Subtotal 50.0 SPP SPRM 541 KACP 546 CAPACITY;SPP,SWPP,2 Х 0.0 60967,51MW Subtotal 0.0 541 KACP 780.0 **NET SCHEDULE** SPP 542 KACY 333 CWLD Participation power sales Х 20.0 to Columbia Missouri Nearman participation.;SPP,KCPL, 171,20MW SPP 542 KACY 515 **SWPA** Hydro to EDE to KCPL to -38.0 KACY;SPP,KCPL,70817, 39MW SPP 542 KACY 531 MIDW Х -3.0 SH Wind to BPU; SPP Х 542 KACY 536 WERE Fredonia (KMEA/WRGS 3.0 from Nearman);SPP-SWPP 883783 SPP 542 KACY 536 WERE Mulvane (KMEA/WRGS 3.0 Х from Nearman);SPP-SWPP 883647 SPP KACY 536 WERE Neodesha (KMEA/KPP 4.0 542 Х from Nearman):SPP-SWPP385632 SPP 542 KACY 536 WERE Winfield (KMEA/KPP Х 13.0 from Nearman);SPP-SWPP 409265 SPP 542 KACY 540 MIPU :SPP,KACY,479115,5M Х 0.0 W;SPP,KACY,485219,5M W;SPP,KACY,557498,5M W SPP 542 KACY KACP 541 Participation power sales Х 15.0 to Kansans Municipal Energy Agency Nearman participation cities.;SPP,KCPL,70773,

3MW;SPP,KCPL,70774,2 MW;SPP,KCPL,70775,3 MW;SPP,KCPL,70776,10 MW

	542	KACY			NET SCHEDULE		17.0
SPP	544	EMDE	351	EES	;SPP,ENTR,????,100MW ,PLUM POINT,100MW	Х	-100.0
					Subtotal		-100.0
SPP	544	EMDE	536	WERE	;SPP,SWPP,344550,162 MW;SPP,WERE,75098,1 62MW;SPP,WR,381430, 165MW	Х	0.0
SPP	544	EMDE	536	WERE	;SPP,SWPP,126958,200 MW	Х	200.0
					Subtotal		200.0
	544	EMDE	539	MKEC	Meridian Way Subtotal	Х	-31.0 -31.0
SPP	544	EMDE	541	KACP	IATAN 1 CAPACITY;SPP,KCPL,1 603,80MW;SPP,EDE,526 697 80MW	Х	-85.0
SPP	544	EMDE	541	KACP	IATAN 2 CAPACITY;SPP,KCPL,1 603,80MW;SPP,EDE,526 697 80MW	Х	-102.0
					Subtotal		-187.0
	544	EMDE			NET SCHEDULE		-118.0
SPP	545	INDN	541	KACP	;SPP,KCPL,872510,90M W	Х	0.0
SPP	545	INDN	541	KACP	IATAN;SPP,KCPL,10337	Х	-50.0
SPP	545	INDN	645	OPPD	Nebraska City 2;SPP,OPPD,624705,55 MW	Х	-50.0
SPP	545	INDN	645	OPPD	Nebraska City 2;SPP,OPPD,624705,55 MW	Х	-6.0
SPP	545	INDN	645	OPPD	Nebraska City 2;SPP,OPPD,624705,55 MW	Х	-1.0
	545	INDN			NET SCHEDULE		-107.0

SPP	546	SPRM	515	SWPA	PEAKING;SPP,SPA,1183 16,55MW;SPP,SPA,1183 64 125MW	Х	-50.0
SPP	546	SPRM	515	SWPA	NIXA;SPP,SPA,118363,7 0MW ??	Х	78.0
					Subtotal		28.0
SPP	546	SPRM	523	GRRD	•	Х	0.0
SPP	546	SPRM	541	KACP	;SPP,SWPP,260967,51M	Х	0.0
					Subtotal		0.0
	546	SPRM			NET SCHEDULE		28.0
SPP			534	SUNC	MEAN WAPA-RMR	х	37.00
					Contract to Western		
000	640	MEAN	E 40		Kansas, DELIVERY	v	0.00
366	640	NPPD	540	ST.IO	Participation	^	0.00
SPP	010		540	MIPU-	NPPD MPS Cooper	Х	0.00
	640	NPPD		STJO	Participation		
SPP	0.40		005		NPPD MEC Cooper	Х	150.00
epp	640	NPPD	635	MEC	Participation	V	10.00
SFF	640	NPPD	645	OPPD		^ V	2.00
	640	NPPD	645	OPPD	GPIS NC2 Participation	×	-2.00
SPP	640	GRIS	645	OPPD	NPPD NC2 Participation	A V	-34.00
	640	NPPD	645	OPPD	NCLLWEC2 Participation	×	-102.00
SPP	640	MEAN	645	OPPD	OPPD Ainsworth Wind	X	2.00
	640	NPPD	645	OPPD	Participation	Λ	2.00
SPP	0.0		0.0	••••	OPPD Elkhorn Ridge	Х	5.00
	640	NPPD	645	OPPD	Participation		
SPP	640	NPPD	650	LES	LES GGS Participation	Х	102.00
SPP	0.40		050	. = 0	LES Sheldon Station	Х	68.00
SDD	640	NPPD	650	LES	Participation	Y	56.00
	640	NPPD	650	LES		×	54.00
OF F	640	NPPD	650	LES	LES WAFA FIIII Feaking	∧ ∨	54.00 10.00
SFF	640	NPPD	650	LES	Re-Sale to MEAN	^	-10.00
SPP	010		000		LES Elkhorn Ridge Wind	Х	1.00
	640	NPPD	650	LES	Participation		
SPP	640	NPPD	652	WAPA	WAPA LAP	Х	-4.00
SPP	640	NPPD	652	WAPA	WAPA Firm / Peaking	Х	-436.00
SPP	640	NPPD	652	WAPA	WAPA Loup	Х	-15.00
SPP					HCPD Cooper	Х	0.00
000	640	NPPD	652	WAPA	Participation	V	0.00
5PP	640	GRIS	652	WAPA	GRIS WAPA Delivery	X	-9.00
2PP	0.10				BA (Reduction of WAPA	Х	4.00
	640	NPPD	652	VVAPA	rirm)		

Eastern Interconnection Planning Collaborative

SPP	0.40		050		WAPA Loads in NPPD	Х	-89.00
SPP	640	NPPD	652	WAPA	BA BEPC Load (TSGT &	Х	-353.00
SPP	640	NPPD	652	BEPC	Rushmore) in NPPD BA	x	0.00
	640	MEAN	652	BEPC	Participation to TSGT	Λ	0.00
SPP	640		650		HCPD WEC2	Х	61.00
SPP	040		002	псрр	WAPA Sidney DC Tie	Х	00.00
	640	NPPD	652	WAPA	Schedule		20.00
SPP	640	NPPD	652	WAPA	LES WAPA Firm Delivery	Х	-56.00
SPP					LES WAPA Firm Peaking	Х	-54.00
	640	NPPD	652	WAPA	Delivery		
	640	NPPD			NET SCHEDULE		-644.00
000						N/	50.00
SPP	645		330	AECI	MJMEUC NC2 Participation	Х	50.00
SPP	040	OND	330	AECI	MJMEUC NC2	Х	7.00
	645	OPPD			Participation		
SPP	645	OPPD	545	INDN	INDN NC2 Participation	Х	50.00
SPP	645	OPPD	545	INDN	INDN NC2 Participation	Х	6.00
SPP	645	OPPD	545	INDN	INDN NC2 Participation	Х	1.00
SPP	645	OPPD	652	WAPA	WAPA load in OPPD BA	Х	-22.00
SPP	645	OPPD	652	WAPA		Х	-82.00
SPP	645	OPPD	652	WAPA	Product K Agreement	Х	0.00
SPP			600	XEL-	CMMPA NC2	Х	15.00
000	645	OPPD	0.40	NSP	Participation	Ň	40.00
SPP	645	OPPD	640	NPPD	NPPD load in OPPD BA	X	-10.00
SPP	645	OPPD	640	NPPD	OPPD load in NPPD BA	X	2.00
SPP	645	OPPD	640	NPPD	GRIS NC2 Participation	X	34.00
SPP	645	OPPD	640	NPPD	NPPD NC2 Participation	Х	162.00
SPP	645	OPPD	640	NPPD	NCU WEC2 Participation	Х	-10.00
SPP	C 4 E		640	NPPD	OPPD Ainsworth Wind	Х	-2.00
SPP	645	OPPD	640	NPPD	OPPD Elkhorn Ridge	x	-5.00
	645	OPPD	0-10		Participation	χ	0.00
	645	OPPD			NET SCHEDULE		196.00
SPP					WS3 to LES (shared	Х	-50.00
	650	LES	635	MEC	generation)		
SPP	650	150	605		WS3 to LES (shared	Х	-50.00
SPP	050	LEO	035	WEC	generation) Gentelman Station	x	-102 00
511	650	LES	640	NPPD	Participation	~	102.00
SPP		-	-		Sheldon Station	Х	-68.00
	650	LES	640	NPPD	Participation		

Eastern Interconnection Planning Collaborative

SPP SPP SPP SPP	650 650 650 650	LES LES LES	640 640 640 640	NPPD NPPD NPPD NPPD	WAPA Firm WAPA Firm Peaking LRS Re-Sale to MEAN Elkhorn Ridge Wind Participation	X X X X	-56.00 -54.00 10.00 -1.00
SPP	650	LES	652	WAPA	Laramie River Station (shared generation)	Х	-182.00
	650	LES			NET SCHEDULE		-553.00
SPP	998	ERCO T	520	AEPW	SPP,CSWS,343411,80M W;SPP,CSWS,513653,10 8MW;SPP,CSWS,513659 22MW (EAST)	х	-50.0
SPP	998	ERCO T	520	AEPW	SPP,CSWS,343411,80M W;SPP,CSWS,513653,10 8MW;SPP,CSWS,513659 32MW (EAST)	Х	0.0
SPP	998	ERCO T	520	AEPW	,32MW (LAST) SPP,CSWS,343411,80M W;SPP,CSWS,513653,10 8MW;SPP,CSWS,513659 ,32MW (NORTH)	Х	220.0
	998	ERCO T			NET SCHEDULE		170.0
SPP	999	WECC	526	SPS	EPE-EDDY COUNTY;SPS,SWPP,75 0447,50MW;;SPS,SWPP, 750448,17MW;;SPS,SW PP,750453,30MW;;SPS, SWPP,750458,50MW;;S PS SWPP,750458,18MW/	Х	0.0
SPP	999	WECC	526	SPS	PNM- BLACKWATER;SPS,SW	Х	0.0
SPP	999	WECC	526	SPS	SPS,LAMAR,1256070,21	Х	0.0
	999	WECC	526	SPS	SPS,LAMAR,1256074,21	Х	105.0
SPP	999	WECC	526	SPS	LOAD;SPS,LAMAR,???? ?,2MW	Х	-2.0
	999	WECC			NET SCHEDULE		103.0

Tennessee Valley Authority

TVA BALANCING AUTHORITY AREA INTERCHANGE Area (s) in the case that make up the TVA BA: 347 EIPC 2020 Summer Future Year Study

TVA Balancing Authority Area Scheduled Imports/Contract Purchases:

Total :		120 MM
SOCO	SOCO Load	-139 MW

TVA Balancing Authority Area Scheduled Exports/Contract Sales:

CPLW	SEPA	1 MW
SOCO	TVA Load	187 MW
LGEE	SEPA	62 MW
LGEE	TVA Load	110 MW
BREC	SEPA	190 MW
EKPC	SEPA	100 MW
SIPC	SEPA	28 MW
SMEPA	SEPA	51 MW
EES	TVA Load	30 MW
EES	SEPA to MEAM	19 MW
EES	SEPA to MDEA	11 MW

Total :

789 MW

Total Net Interchange

650 MW

Notes:

- 1. Positive interchange indicates an export
- 2. Negative interchange indicates an import